Advertisement

Abstract

Models are intermediate way stations on the road to a complete theory of protein motions and protein dynamics. All roads lead to Rome and many models may contain some of the right ingredients for a successful theory. We can learn from nuclear theory, where apparently contradictory approaches, the liquid drop and the nuclear shell model, were both way stations to a unified description of nuclear dynamics. Here we describe some similarities between proteins and glasses, in particular spin glasses. This similarity does not mean that proteins are glasses but that essential physical characteristics are common. Since many more theorists work in the fields of glasses and spin glasses than in proteins, we may be able to borrow from their results or even entice them to join our efforts. On the other hand, proteins have the advantage of 3 1/2 Gy of R&D and there may be many experiments that can be performed more easily and more reliably with proteins than with glasses. The various fields consequently may be able to progress faster together than individually.

Keywords

Spin Glass Activation Enthalpy Heme Protein Binding Rate Amorphous Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Austin, K. Beeson, L. Eisenstein, H. Frauenfelder, I.C. Gunsalus and V.P. Marshall, Science, 181, 541 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    F. Stetzkowski, R. Banerjee, M.C. Marden, D.K. Beece, S.F. Bowne, W. Doster, L. Eisenstein, H. Frauenfelder, L. Reinisch, E. Shyamsunder and C. Jung, J. Biol. Chem., 260, 8803 (1985).PubMedGoogle Scholar
  3. 3.
    “Amorphous Solids,” W.A. Phillips, ed., Springer, Berlin (1981).Google Scholar
  4. 4.
    F. Mezei, A.P. Murani and J.L. Tholence, Solid State Comm., 45, 411 (1983).CrossRefGoogle Scholar
  5. 5.
    R.V. Chamberlin, G. Mozurkewich and R. Orbach, Phys. Rev. Lett., 52, 867 (1984).CrossRefGoogle Scholar
  6. 6.
    J. Klafter, A. Blumen and G. Zumofen, Phil. Mag., B53, L29 (1986).Google Scholar
  7. 7.
    R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder and I.C. Gunsalus, Biochemistry, 14, 5355 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Frauenfelder, in “Structure & Dynamics: Nucleic Acids & Proteins,” E. Clementi and R.H. Sarma, eds., Adenine Press, Guilderland, New York (1983).Google Scholar
  9. 9.
    H. Frauenfelder, G.A. Petsko and D. Tsernoglou, Nature, 280, 558 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    P.J. Artimyuk, C.C.F. Blake, D.E.P. Grace, S.J. Oatley, D.C. Phillips and M.J.E. Sternberg, Nature, 280, 563 (1979).CrossRefGoogle Scholar
  11. 11.
    G.A. Petsko and D. Ringe, Ann. Rev. Biophys. Bioeng., 13, 331 (1984).CrossRefGoogle Scholar
  12. 12.
    J. Kuriyan, S. Wilz, M. Karplus and G.A. Petsko, J. Mol. Biol., submitted.Google Scholar
  13. 13.
    H. Keller and P.G. Debrunner, Phys. Rev. Lett., 45, 68 (1980).CrossRefGoogle Scholar
  14. 14.
    F. Parak, E.N. Frolov, R.L. Mössbauer and V.I. Goldanskii, J. Mol. Biol., 145, 825 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    F. Parak, E.W. Knapp and D. Kucheida, J. Mol. Biol., 161, 177 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    E.R. Bauminger, S.G. Cohen, I. Nowik, S. Ofer and J. Yariv, Proc. Natl. Acad. Sci. USA, 80, 736 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    Yu. Krupyanski, F. Parak, D. Engelman, R.L. Mössbauer, V.I. Goldanskii and I. Suszcheliev, Z. Naturforsch., C.37, 57 (1982).Google Scholar
  18. 18.
    F.J. Litterst, Nuclear Instr. Meth., 199, 87 (1982).CrossRefGoogle Scholar
  19. 19.
    V.I. Goldanskii, Yu. F. Krupyanski and V.N. Flerov, Doklady Akad. Nauk SSSR, 272, 978 (1983).Google Scholar
  20. 20.
    G.P. Singh, H.J. Schink, H. von Lohneysen, F. Parak and S. Hunklinger, Z. Phys., B55, 23 (1984).CrossRefGoogle Scholar
  21. 21.
    H. Frauenfelder, “Structure and Motion: Membranes, Nucleic Acids & Proteins,” E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma, eds., Adenine Press, Guilderland, New York (1985).Google Scholar
  22. 22.
    A. Ansari, J. Berendzen, S.F. Bowne, H. Frauenfelder, I.E.T. Iben, T.B. Sauke, E. Shyamsunder and R.D. Young, Proc. Natl. Acad. Sci. USA, 82, 5000 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    S.E.V. Phillips, J. Mol. Biol., 142, 531 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Frauenfelder and P.G. Wolynes, Science, 229, 337 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Bialek and R.F. Goldstein, Biophys. J., 48, 1027 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    V. Srajer, K.T. Schomacker and P.M. Champion, Phys. Rev. Letters, submitted.Google Scholar
  27. 27.
    A. Cooper, Proc. Natl. Acad. Sci. USA, 73, 2740 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    L. Onsager, Phys. Rev., 37, 405 (1931).CrossRefGoogle Scholar
  29. 29.
    H.B. Callen and T.B. Welton, Phys. Rev., 83, 34 (1951).CrossRefGoogle Scholar
  30. 30.
    L. Onsager and S. Machlup, Phys. Rev., 91, 1505 (1953).CrossRefGoogle Scholar
  31. 31.
    R. Kubo, Progress Phys., 29, 255 (1966).CrossRefGoogle Scholar
  32. 32.
    P. Hänggi, Helv. Phys. Acta, 51, 202 (1979).Google Scholar
  33. 33.
    J.M. Ziman, “Models of Disorder,” Cambridge Univ. Press (1979).Google Scholar
  34. 34.
    R. Zalle, “The Physics of Amorphous Solids,” John Wiley, New York (1983).CrossRefGoogle Scholar
  35. 35.
    “Amorphous Solids,” W.A. Phillips, ed., Springer, Berlin (1981).Google Scholar
  36. 36.
    Heidelberg Colloquium on Spin Glasses. Lecture Notes in Physics 192, J.L. van Hemmen and I. Morgenstern, eds., Springer, Berlin (1983).Google Scholar
  37. 37.
    G. Toulouse, Comm. Physics, 2, 115 (1977).Google Scholar
  38. 38.
    D. Stein, Proc. Natl. Acad. Sci. USA, 82, 3670 (1985).PubMedCrossRefGoogle Scholar
  39. 39.
    S. Kirkpatrick and D. Sherrington, Phys. Rev., B17, 4384 (1978).Google Scholar
  40. 40.
    R.G. Palmer, Adv. Phys., 31, 669 (1982).CrossRefGoogle Scholar
  41. 41.
    G. Toulouse, Helv. Phys. Acta, 57, 459 (1984).Google Scholar
  42. 42.
    M. Mézard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasoro, Phys. Rev. Lett., 52, 1156 (1984).CrossRefGoogle Scholar
  43. 43.
    R.G. Palmer, D.L. Stein, E. Abrahams and P.W. Anderson, Phys. Rev. Lett., 53, 958 (1984).CrossRefGoogle Scholar
  44. 44.
    W. Weber, Annalen der Physik und Chemie (Poggendorf), 34, 147 (1835).Google Scholar
  45. 45.
    J.T. Bendler, J. Stat. Phys., 36, 625 (1984).CrossRefGoogle Scholar
  46. 46.
    M.F. Shlesinger and E.W. Montroll, Proc. Natl. Acad. Sci. USA, 81, 1280 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    B. Huberman and M. Kerszberg, J. Phys., A18, L331 (1985).Google Scholar
  48. 48.
    R. Rammal, G. Toulouse and M.A. Virasoro, Rev. Mod. Phys., in press (1986).Google Scholar
  49. 49.
    A.T. Ogielski and D.L. Stein, Phys. Rev. Lett., 55, 1634 (1985).PubMedCrossRefGoogle Scholar
  50. 50.
    S. Teitel and E. Domany, Phys. Rev. Lett., 55, 2176 (1985).PubMedCrossRefGoogle Scholar
  51. 51.
    A. Blumen, J. Klafter and G. Zumofen, J. Phys., A19, L77 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hans Frauenfelder
    • 1
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations