Protein Fluctuations and Hemeprotein Affinity for Ligand

  • Bernard Alpert


Binding processes in hemeproteins involve the iron atom and the protein properties: structural and dynamics. Crystallographic data of Perutz have given an appreciate popularity to a correlation between the displacement of the iron out of the porphyrin plane and the affinity of the hemeprotein for ligand. However, the dynamics character of the protein matrix may explain the ligand binding properties in hemeproteins. The internal motions of the apoprotein could be “the structural parameter” involved in the mechanism regulating the ligand binding.


Ligand Binding Iron Atom Internal Motion Ligand Binding Property Geminate Recombination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.F. Perutz, H. Muirhead, J.M. Cox and L.C.G. Goaman, Nature, 219, 131 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    M.F. Perutz, Nature, 228, 726 (1970).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Pin, P. Valat, R. Cortes, A. Michalowicz and B. Alpert, Biophys. J., 48, 997 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Wyman, Advan. Protein. Chem., 4, 407 (1948).CrossRefGoogle Scholar
  5. 5.
    J. Monod, J. Wyman and J.P. Changeux, J. Mol. Biol., 12, 88 (1965).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Weber, Biochemistry, 11, 864 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    J.J. Hopfield, J. Mol. Biol., 77, 207 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    D.A. Case and M.J. Karplus, J. Mol. Biol., 132, 343 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    B. Alpert, S. El Mohsni, L. Lindqvist and F. Tfibel, Chem. Phys. Letters, 64, 11 (1979).CrossRefGoogle Scholar
  10. 10.
    A. Bianconi, Appl. Surf. Sci., 6, 392 (1980).Google Scholar
  11. 11.
    S. Pin, R. Cortes and B. Alpert, Febs Letters, in press.Google Scholar
  12. 12.
    R.W. Noble, L.J. Parkhurst and Q.H. Gibson, J. Biol. Chem., 245, 6628 (1970).PubMedGoogle Scholar
  13. 13.
    A.L. Tan, A. De Young and R.W. Noble, J. Biol. Chem., 247, 2493 (1972).PubMedGoogle Scholar
  14. 14.
    P. Valat and B. Alpert, Laser Chem., 4, 173 (1985).CrossRefGoogle Scholar
  15. 15.
    J.R. Lakowicz and G. Weber, Biochemistry, 12, 4161 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    E. Gratton, D.M. Jameson, G. Weber and B. Alpert, Biophys. J., 45, 789 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    F.J.W. Roughton, A.B. Otis and R.L.J. Lyster, Proc. Roy. Soc., 144, 29 (1955).CrossRefGoogle Scholar
  18. 18.
    A. Rossi Fanelli and E. Antonini, Arch. Biochem. Biophys., 77, 478 (1958).CrossRefGoogle Scholar
  19. 19.
    J. Albani, B. Alpert and D.M. Jameson, Eur. J. Biochem., submitted 1986.Google Scholar
  20. 20.
    S. Pin, P. Valat, H. Tourbez and B. Alpert, Chem. Phys. Letters, 128, 79 (1986).CrossRefGoogle Scholar
  21. 21.
    L. Lindqvist, S. El Mohsni, F. Tfibel, B. Alpert and J.C. Andre, Chem. Phys. Letters, 79, 525 (1981).CrossRefGoogle Scholar
  22. 22.
    S. Beychoc, I. Tyuna, R.W. Benesch and R. Benesch, J. Biol. Chem., 242, 2460 (1967).Google Scholar
  23. 23.
    S.R. Simon and C.R. Cantor, PNAS, 63, 205 (1969).PubMedCrossRefGoogle Scholar
  24. 24.
    M.F. Perutz, J.E. Ladner, S.R. Simon and C. Ho, Biochemistry, 10, 2163 (1974).CrossRefGoogle Scholar
  25. 25.
    M. Coppey, S. Dasgupta and T.G. Spiro, Biochemistry, 25, 1940 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Hervé, M.F. Moody, P. Tauc, P. Vachette and P.T. Jones, J. Mol. Biol., 185, 189 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Dalvit, S. Muira, A. De Young, R.W. Noble, M. Cerdonio and C. Ho, Eur. J. Biochem., 141, 255 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Bernard Alpert
    • 1
  1. 1.Laboratoire de Biologie Physico-ChimiqueUniversité ParisParisFrance

Personalised recommendations