Distributions and Fluctuations of Protein Structures Investigated by X-Ray Analysis and Mössbauer Spectroscopy

  • F. Parak
  • M. Fischer
  • Enrico Graffweg
  • H. Formanek


The X-ray structure determination of myoglobin at five temperatures allows an estimation of the structural order at 0 K Extrapolation to 0 K of the < x 2> x -values determined between 80 K and 300 K shows that this protein has a large zero point disorder indicating a distribution of slightly different structures. At temperatures above 200 K, Mössbauer spectroscopy measures structural fluctuations of the molecules at a time scale between 10-7 to 10-9 s occurring within the distribution of structures obtained by X-ray methods. These fluctuations can be described as a diffusive motion of segments of the molecule within a limited space. RSMR-experiments show that the characteristic size of these segments is larger than 5Å but smaller than the diameter of the molecule.

Investigations of model compounds prove that forming and breaking of hydrogen bridges plays an important role for protein specific motions on the time scale between 10-7 and 10-9 s. Water serves as a plasticizer but also dry myoglobin reveals protein dynamics. Mössbauer spectroscopy on membrane proteins gives < x2 >y-values similar to those of myoglobin crystals. The onset of protein specific motions occurs, however, at lower temperatures.


Mossbauer Spectroscopy Backbone Atom Diffusive Motion Hydrogen Bridge Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder and I.C. Gunsalus, Biochem., 14, 5355 (1975).CrossRefGoogle Scholar
  2. 2.
    H. Frauenfelder, G.A. Petsko and D. Tsernoglou, Nature (London), 280, 558 (1979).CrossRefGoogle Scholar
  3. 3.
    H. Hartmann, F. Parak, W. Steigemann, G.A. Petsko, D. Ringe Ponzi and H. Frauenfelder, Proc. Natl. Acad. Sci. USA, 79, 4967 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Parak, H. Hartmann and G.U. Nienhaus, Proceeds of the Conference on Protein Structure: Electronic and Molecular Reactivity, ed. by B. Chance and B. Austin, in press (1986).Google Scholar
  5. 5.
    F. Parak, H. Hartmann, K.D. Aumann, H. Reuscher, G. Rennekamp, H. Bartunik and W. Steigemann (to be published).Google Scholar
  6. 6.
    F. Parak and H. Formanek, Acta Chryst., A27, 573 (1979).Google Scholar
  7. 7.
    H. Keller and P.G. Debrunner, Phys. Rev. Lett., 45, 68 (1980).CrossRefGoogle Scholar
  8. 8.
    F. Parak, E.N. Frolov, R.L. Mössbauer and V.I. Goldanskii, J. Mol. Biol., 145, 825 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    S.G. Cohen, E.R. Bauminger, I. Nowik and S. Ofer, Phys. Rev. Lett., 46, 1244 (1981).CrossRefGoogle Scholar
  10. 10.
    F. Parak, E.W. Knapp and D. Kucheida, J. Mol. Biol., 161, 177 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    E.W. Knapp, S.F. Fischer and F. Parak, J. Phys. Chem., 86, 5042 (1982).CrossRefGoogle Scholar
  12. 12.
    E.R. Bauminger, S.G. Cohen, I. Nowik, S. Ofer and J. Yariv, Proc. Natl. Acad. Sci. USA, 80, 736 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Nowik, E.R. Bauminger, S.G. Cohen and S. Ofen, Phys. Rev., A31, 2291 (1985).Google Scholar
  14. 14.
    F. Parak, in “Structure and Motion: Membranes, Nucleic Acids and Proteins,” eds. E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma, Academic Press, p. 243 (1985).Google Scholar
  15. 15.
    F. Parak and E.W. Knapp, Proc. Natl. Acad. Sci. USA, 81, 7088 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Parak, H. Hartmann, G.U. Nienhaus and J. Heidemeier, in “Proceed. of the First EBSA Workshop: Structure, Dynamics and Function of Biomolecules,” eds. A. Ehrenberg and R. Rigler, in press.Google Scholar
  17. 17.
    H. Frauenfelder, in “Structure and Motion: Membranes, Nucleic Acids and Proteins,” eds. E. Clementi, G. Corongiu, M.H. Sarma and R.H. Sarma, Academic Press, p. 205 (1985).Google Scholar
  18. 18.
    H. Frauenfelder and F. Parak, in preparation.Google Scholar
  19. 19.
    A. Ansari, J. Berendzen, S.F. Bowne, H. Frauenfelder, I.E.T. Iben, T.B. Sauke, E. Shyamsunder and R.D. Young, Proc. Natl. Acad. Sci. USA, 82, 5000 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    G.U. Nienhaus and F. Parak, Hyperfine Interactions, 29, 1451 (1986).CrossRefGoogle Scholar
  21. 21.
    B. Gavish, Biophys. Struct. Mech., 10, 31 (1983).CrossRefGoogle Scholar
  22. 22.
    F. Parak in “Methods in Enzymology,” Vol. 127, ed. L. Packer, Academic Press, p. 196 (1986).Google Scholar
  23. 23.
    H. Hartmann, W. Steigemann, R. Reuscher and F. Parak, submitted to Eur. Biophys. J. (1986).Google Scholar
  24. 24.
    Yu. F. Krupyanskii, F. Parak, V.I. Goldanskii, R.L. Mössbauer, E. Gaubmann, H. Engelmann and I.P. Suzdalev, Z. Naturforschg., 37c, 57 (1982).Google Scholar
  25. 25.
    F. Parak, E.N. Frolov, A.A. Kononenko, R.L. Mössbauer, V.I. Goldanskii and A.B. Rubin, FEBS Lett., 117, 368 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    F. Parak et al., to be published.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. Parak
    • 1
  • M. Fischer
    • 1
  • Enrico Graffweg
    • 1
  • H. Formanek
    • 2
  1. 1.Institut für Physikalische Chemie der WestfälischenWilhelms Universität MünsterMünsterFed. Rep. Germany
  2. 2.Botanisches InstitutUniversität MünchenMünchen 19Germany

Personalised recommendations