Molecular Spectral Intensities in LTE Plasmas

  • D. O. Wharmby
Part of the NATO ASI Series book series (ASIB, volume 149)


High-pressure arcs which operate in LTE or near LTE have important commercial applications for switchgear, plasma torches, plasma chemistry and analysis, lighting etc. Much modeling has been done on these arcs and it has led to detailed understanding of at least some aspects (Lowke, 1979; Wharmby, 1980; Pfender, 1978). Some arcs contain substantial proportions of molecular species: for example, switchgear arcs in SF6 (Lowke and Liebermann, 1972) or lighting arcs in tin halides (Fischer, 1974). Molecules have major effects on the transport properties and have been well studied. In theoretical models, radiation from molecules has been treated very incompletely, either by using direct measurements of emission coefficients which apply to very specific conditions (Lowke, 1979; Zollweg et al., 1975), or by simply omitting it (Fischer, 1974). In some arcs with lighting applications up to 75% of the radiation may come from molecules, and so some way of including molecular emission in the theory is very desirable. Even in arcs such as high pressure sodium or mercury, the extreme wing line broadening observed is related to molecular emission and needs correct treatment before realistic spectra can be predicted.


Molecular State Molecular Band High Pressure Sodium Internuclear Separation Separate Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alkemade, C. Th. J., Hollander, Th., Snelleman, W. and Zeegers, P. J. Th, 1982, “Metal Vapors in Flames”, Pergamon, Oxford.Google Scholar
  2. Allard, N. and Kielkopf, J., 1982, Revs. Mod. Phys., 54:1103.CrossRefGoogle Scholar
  3. Armstrong, B. H. and Nicholls, R. W., 1972, “Emission, Absorption and Radiation from Heated Atmospheres”, Pergamon, Oxford.Google Scholar
  4. Davidson, N., 1962, “Statistical Mechanics”, McGraw-Hill, New York.Google Scholar
  5. Fischer, E., 1974, J. Appl. Phys., 45:3365.CrossRefGoogle Scholar
  6. Gallagher, A., 1975, in: “Atomic Physics IV”, G.Zu Pulitz, E. W. Weber, and A. Winnacker, eds., Plenum, New York.Google Scholar
  7. Gallagher, A., 1979, in: “Excimer Lasers: Topics in Applied Physics”, Vol. 30, Ch. K. Rhodes, ed., Springer, Berlin.Google Scholar
  8. Gaydon, A. G., 1968, “Dissociation Energies and Spectra of Diatomic Molecules”, 3rd edition, Chapman and Hall, London.Google Scholar
  9. Griem, H. R., 1974, “Spectral Line Broadening in Plasmas”, Academic Press, New York.Google Scholar
  10. de Groot, J. J., 1974, “Investigation of High-Pressure Sodium and Mercury Tin Iodide Arc”, Ph.D. Thesis, Technical University, Eindhoven.Google Scholar
  11. Hedges, R. E. M., Drummond, D. L. and Gallagher, A., 1972, Phys. Rev. A., 6:1519.CrossRefGoogle Scholar
  12. Herzberg, G., 1950, “Molecular Structure and Molecular Spectra,” Van Nostrand, Princeton.Google Scholar
  13. Hindmarsh, W. R. and Farr, J. M., 1972, Prog. Quantum Elect., 2:143.Google Scholar
  14. Jeung, G., 1983, J. Phys. B: At Mol Phys., 16:4289.CrossRefGoogle Scholar
  15. Jones, B. F. and Mottram D. A. J., 1981, J. Phys. D: Appl. Phys., 14:1183.CrossRefGoogle Scholar
  16. Jongerius, M. J., Hollander, Tj and Alkemade, C. Th. J., 1981, J. Quant. Spectrosc. Radiat. Transfer, 26:285.CrossRefGoogle Scholar
  17. King, G. W. and van Vleck, J. H., 1939, Phys. Rev., 55:1165.CrossRefGoogle Scholar
  18. Konowalow, D. D., Rosenkrantz, M. E. and Olson, M. L., 1980, J. Chem. Phys., 72:2612.CrossRefGoogle Scholar
  19. Konowalow, D. D., Rosenkrantz, M. E. and Hochhauser, D. S., 1983, J. Mol. Spect., 99:321.CrossRefGoogle Scholar
  20. Lam, L. K., Gallagher, A. and Hessel, M. M., 1977, J. Chem. Phys., 66:3550.CrossRefGoogle Scholar
  21. Laskowski, B. C., Langhoff, S. R. and Stallcop, J. R., 1981, J. Chem. Phys., 75:815.CrossRefGoogle Scholar
  22. Lowke, J. J., 1979, J. Appl. Phys., 50:147.CrossRefGoogle Scholar
  23. Mück, G., 1973, in: Proceedings, 11th Int. Conf. Phen. Ionized Gases, Prague.Google Scholar
  24. Mück, G. and Popp, H-P., 1973, in: “Proceedings, 11th Int. Conf. Phen. Ionized Gases,” Prague.Google Scholar
  25. Mucklejohn, S. A., 1985, Private Communication.Google Scholar
  26. Pfender, E., 1978, in: “Gaseous Electronics”, Vol. 1., M.N. Hirsh and H. J. Oskam, eds., Academic Press, New York.Google Scholar
  27. Phelps, A. V., 1972, “Tunable Gas Lasers Utilizing Ground State Disslocation”, Joint Institute for Laboratory Astrophysics Report 110.Google Scholar
  28. Rehder, L., Fischer, E. and Lorenz, R., 1973, in: “Proceedings, 11th Int. Conf. Phen. Ionized Gases,” Prague.Google Scholar
  29. Richter, J., 1968, in: “Plasma Diagnostics”, W. Lochte-Holtgreven, ed., North Holland, Amsterdam.Google Scholar
  30. Stromberg, H. P. and Schafer, R., 1983, J. Appl. Phys., 54:4338.CrossRefGoogle Scholar
  31. Szudy, J. and Baylis, V., 1975, J. Quant. Spectrosc. Radiat. Transfer, 15:641.CrossRefGoogle Scholar
  32. Tatum, J. B., 1967, Astrophysical Journal Supplement Series, 14:21.CrossRefGoogle Scholar
  33. West, W. P., Shuker, P. and Gallagher, A., 1978, J. Chem. Phys., 68:3864.CrossRefGoogle Scholar
  34. Whittaker, F. L., 1972, “The Spectrum of the High-pressure Sodium Lamp”, Thorn Lighting Limited, Technical Report, LRD2005.Google Scholar
  35. Woerdmann, J. P., 1981, J. Chem. Phys., 75:5577.CrossRefGoogle Scholar
  36. Woerdmann, J. P. and de Groot, J. J., 1982, in: “Metal Bonding and Interaction in High Temperature Systems”, J. L. Gole and W. C. Stwalley, eds., American Chemical Society, Washington.Google Scholar
  37. Zollweg, R., Lowke, J. J. and Liebermann, R. W., 1975, J. Appl. Phys., 46:3828.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. O. Wharmby
    • 1
  1. 1.Research and Engineering DivisionThorn EMI Lighting LimitedLeicesterEngland

Personalised recommendations