Light Scattering

  • H.-J. Kunze
Part of the NATO ASI Series book series (ASIB, volume 149)


Light incident on a laboratory plasma interacts with all constituents of the plasma (electrons, ions, atoms and molecules), and the fraction re-radiated into all directions usually is referred to as scattered radiation. Various scattering processes are possible, and by selecting suitably the wavelength of the incident radiation, one may achieve one process to dominate. The analysis of the scattered radiation yields a wealth of information on plasma parameters, plasma composition and plasma phenomena, and these diagnostic possibilities have been the prime motivation for the strong interest in these processes during the past two decades. Quite a number of different experimental methods have evolved: the differences arise from different incident radiation, from different interaction processes being effective or from different experimental techniques used specifically with regard to the detection and analysis of the radiation. Figure 1 reveals one great advantage of most of these methods: as the incident radiation traverses the plasma, the “scattering volume” may be selected by the detection optics. Scattered radiation thus is received only from this volume although the plasma radiation is collected along the total line of sight. Light scattering methods allow, therefore, spatially resolved measurements.


Differential Cross Section Incident Radiation Scattered Radiation Velocity Distribution Function Energy Level Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burgess, D. D., Kolbe, G., and Ward, J. M., 1978, J. Phys. B, 11:2765.CrossRefGoogle Scholar
  2. Burnett, K., Cooper, J., Ballagh, R. J., and Smith, E. W., 1980 (I), Phys. Rev. A, 22:2005.CrossRefGoogle Scholar
  3. Burnett, K., Cooper, J., 1980 (II), Phys. Rev. A, 22:2027.CrossRefGoogle Scholar
  4. Burnett, K. and Cooper, J., 1980 (III), Phys. Rev. A, 22:2044.CrossRefGoogle Scholar
  5. Burrell, C. F. and Kunze, H. J., 1972, Phys. Rev. Lett., 28:1.CrossRefGoogle Scholar
  6. Carlsten, J. L. and Szoke, A., 1976, J. Phys. B, 9:1231.CrossRefGoogle Scholar
  7. Chan, C. and Daily, J. W., 1979, J. Quant. Spectrosc. Radiat. Transfer, 21:527.CrossRefGoogle Scholar
  8. Cooper, J., 1979, Astrophys. J., 228:339.CrossRefGoogle Scholar
  9. Das, P., Ondrey, G., van Veen, N., and Bersohn, R., 1983, J. Chem. Phys. 79:721.CrossRefGoogle Scholar
  10. Demtroder, W., 1981, “Laser Spectroscopy”. Springer, Berlin.Google Scholar
  11. DeSilva, A. W. and Goldenbaum, G., 1970, Chapter 3, in: “Methods of Experimental Physics”, Vol. 9A, Griem, R. H., and Lovberg, eds., Academic Press, New York.Google Scholar
  12. DiMauro, L. F., Gottscho, R. A., and Miller, T. A., 1984, J. Appl. Phys., 56:2007.CrossRefGoogle Scholar
  13. Dobele, H. F. and Hirsch, K., 1975, Phys. Lett., 54A:267.Google Scholar
  14. Dubreuil, B. and Catherinot, A., 1980, Phys. Rev. A, 21:188.CrossRefGoogle Scholar
  15. Evans, D. E., 1970, Plasma Phys., 12:573.CrossRefGoogle Scholar
  16. Evans, D. E. and Katzenstein, J., 1969, Rep. Prog. Phys., 32:207.CrossRefGoogle Scholar
  17. Gottscho, R., 1985, this Proceedings.Google Scholar
  18. Hildebrandt, J., 1983, J. Phys. B, 16:149.CrossRefGoogle Scholar
  19. Himmel, G. and Sowa, L., 1983, J. Phys. B., 16:4117.CrossRefGoogle Scholar
  20. Hintz, E., 1982, Physica Scripta, T2/2:454.CrossRefGoogle Scholar
  21. Kasparek, W. and Holzhauer, E., 1983, Phys. Rev. A, 27:1737.CrossRefGoogle Scholar
  22. Kunze, H. -J., 1981, in: “Spectral Line Shapes,” Wende, B., ed., Walter. de Gruyter, Berlin.Google Scholar
  23. Kunze, H. -J., 1968, Chapter 9, in: “Plasma Diagnostics,” W. Lochte-Holtgreven, North Holland, Amsterdam.Google Scholar
  24. Maurmann, S. and Kunze, H. -J., 1983, Phys. Fluids, 26:1630.CrossRefGoogle Scholar
  25. Meng, H. C. and Kunze, H. -J., 1979, Phys. Fluids, 22:1082.CrossRefGoogle Scholar
  26. Omont, A., Smith, E. W., and Cooper, J., 1972, Astrophys. J., 175:185.CrossRefGoogle Scholar
  27. Rebhan, U., 1983, Ph. Thesis, Ruhr-University Bochum, to be published in J. Phys. B. Google Scholar
  28. Salpeter, E. E., 1960, Phys. Rev., 120:1528.CrossRefGoogle Scholar
  29. Sheffield, J., 1975, “Plasma Scattering of Electromagnetic Radiation,” Academic Press, New york.Google Scholar
  30. Stern, R. A. and Johnson, III, J. A., 1975, Phys. Rev. Lett., 34:1548.CrossRefGoogle Scholar
  31. Tsuchida, K., Miyake, S., Kadota, K., and Fujita, J., 1983, Plasma Phys., 25:991.CrossRefGoogle Scholar
  32. Vriens, L. and Adriaansz, M., 1975, J. Appl. Phys., 46:3146.CrossRefGoogle Scholar
  33. Vriens, L. and Adriaansz, M., 1976, Appl. Phys., 11:253.CrossRefGoogle Scholar
  34. Voslamber, D. and Yelnik, J. -B., 1978, Phys. Rev. Lett., 41:1233.CrossRefGoogle Scholar
  35. Watanabe, Y., Ikegami, T., Nishiyama, T. and Arkazaki, M., 1984, Jap. J. Appl. Phys., 23:904.CrossRefGoogle Scholar
  36. Yelnik, J. B., Burnett, K., Cooper, J., Ballagh, R. H., and Voslamber, D., 1981, Astrophys. J. 248:705.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H.-J. Kunze
    • 1
  1. 1.Institut für ExperimentalphysikRuhr-UniversitätBochumFR Germany

Personalised recommendations