Rydberg States: Properties and Applications to Electrical Discharge Measurements

  • A. Garscadden
Part of the NATO ASI Series book series (ASIB, volume 149)


If an electron in an atom is excited to a level designated by a high principal quantum number n where n is typically greater than 10, the level is termed a Rydberg level (Stebbings and Dunning, 1983) and the atom is often called a Rydberg atom (Bayfield, 1983; Kleppner et al., 1983). These states have been observed from a wide variety of plasma sources in the laboratory and also from astrophysical sources. In interstellar space the Rydberg levels are formed by radiative recombination. Emission from Rydberg states of atomic hydrogen have been distinguished from the continuum radiation with n as high as 732. In laboratory plasmas, dissociative recombination, cumulative excitation and optical excitation are more likely excitation processes. The development of powerful tunable dye lasers into the ultraviolet permits the selective excitation of many atoms and molecules to high Rydberg states. Recently (Rinneberg et al., 1985) Rydberg states of barium with principal quantum numbers up to 290 have been observed under laboratory conditions. Figure 1 illustrates the photoexcitation method of the helium metastable states that we have used to investigate glow discharge conditions.


Rydberg State Principal Quantum Number Stark Effect Positive Column Laser Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bayfield, J. E., 1983, American Scientist, 71:375.Google Scholar
  2. Bethe, H. A., and Salpeter, E. E., 1957, “Quantum Mechanics of One- and Two-Electron Atoms,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. Bjorklund, G. C., Freeman, R. R., and Storz, R. H., 1979, Opt. Comm., 31:47.CrossRefGoogle Scholar
  4. Bridges, W. B., 1978, J. Opt. Soc. Am., 68:352.CrossRefGoogle Scholar
  5. Butler, S. T., and May, R. A., 1965, Phys. Rev., 137A:10.CrossRefGoogle Scholar
  6. Chardonnet, C., Delande, D., and Gary, J. C., 1984, Optics Comm., 51:249.CrossRefGoogle Scholar
  7. Cohen-Tannoudji, C. and Avan, P., 1977, in: “Colloque International,” CNRS No. 273, Paris.Google Scholar
  8. Condon, E. U., and Shortley, G. H., 1967, “Theory of Atomic Spectra,” Ch 17, Cambridge University Press, Cambridge.Google Scholar
  9. Cooke, W., and Gallagher, T. F., 1978, Phys. Rev., A17:1226.Google Scholar
  10. Delpech, J. F., Boulmer, J., and Devos, F., 1977, Phys. Rev. Lett., 39:1400.Google Scholar
  11. Doughty, D. K., Salih, S., and Lawler, J. E., 1984, Phys. Lett. 103A:41.Google Scholar
  12. Dunning, F. B., 1985, Am. J. Phys., 53:944 and references therein.CrossRefGoogle Scholar
  13. Fano, U., 1961, Phys. Rev., 124:1866.CrossRefGoogle Scholar
  14. Foster, J. S., 1927, Proc. Roy. Soc., A114:47.Google Scholar
  15. Gallagher, T. F., 1983, in: “Rydberg States of Atoms and Molecules,” R. F. Stebbings and F. B. Dunning, eds., Cambridge University Press, Cambridge.Google Scholar
  16. Ganguly, B. N., and Garscadden, A., 1985, Appl. Phys. Lett., 46:540.CrossRefGoogle Scholar
  17. Guardini, A., 1972, “Low Energy Electron Collisions in Gases,” John Wiley and Sons, New York.Google Scholar
  18. Glab, W. L., and Nayfeh, M. N., 1985, Phys. Rev., A31:530.Google Scholar
  19. Harmin, D A., 1984, Phys. Rev., A30:2413.Google Scholar
  20. Katayama, D. H., Cook, J. M., Bondybey, V. E., and Miller, T. E., 1979, Chem. Phys. Lett., 62:542.CrossRefGoogle Scholar
  21. Kleppner, D., Littman, M. G., and Zimmerman, M. L., 1983, in: “Rydberg States of Atoms and Molecules,” R. F. Stebbings and F. B. Dunning, eds., Cambridge University Press, Cambridge.Google Scholar
  22. Koch, P. M., and Mariani, D. R., 1981, Phys. Rev. Lett., 46:1275.CrossRefGoogle Scholar
  23. Luders, G., 1951, Ann. Phys (Leipzig) Ser. 6, 8:301.Google Scholar
  24. Mutsuzawa, M., 1980, J. Phys. B, 13:3201.CrossRefGoogle Scholar
  25. Olson, R. E., 1979, J. Phys. B, 12:L109.CrossRefGoogle Scholar
  26. Rinneberg, H., Neukammer, J., Jonsson, G., Hieronymus, H., Konig, A., and Vietzke, K., 1985, Phy. Rev. Lett., 55:382.CrossRefGoogle Scholar
  27. Schiavone, J. A., Donohue, D. E., Herrick, D. R., and Freund, R. S., 1977, Phys. Rev., A16:48.Google Scholar
  28. Smith, V., 1981, in: “Symposium on H° in Strong Fields,” Los Alamos, New Mexico, (unpublished).Google Scholar
  29. Stebbings, R. F., and Dunnin, F. B., eds., 1983, “Rydberg States of Atoms and Molecules,” Cambridge University Press, Cambridge.Google Scholar
  30. van de Water, W., Mariani, R., and Koch, P. M., 1984, Phys. Rev., A30:2399.Google Scholar
  31. Welge, K. H., 1981, in: “Symposium on Photoionization of Excited Atoms and Molecules,” JILA, Boulder, Colorado (unpublished).Google Scholar
  32. Wing, W. H., Lea, K. R., and Lamb, W. E., Jr., 1973, in: “Atomic Physics 3,” S. J. Smith and G. K. Walters, eds., Plenum Press, New York.Google Scholar
  33. Zel’dovich, Ya. B., and Raizer, Yu. P., 1966, “Physics of Shock Waves and High Temperature Hydrodynamic Phenomena,” Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Garscadden
    • 1
  1. 1.Air Force Wright Aeronautical LaboratoriesWright-Patterson AFBUSA

Personalised recommendations