Advertisement

Gas Discharge Laser Diagnostics Update

  • A. Garscadden
Part of the NATO ASI Series book series (ASIB, volume 149)

Abstract

The investigation of gas discharges dates back to the time of Faraday and other notables of the nineteenth century. Many of the studies were very ambitious in that quite complex gases and complicated geometries were used. Naturally, these early results were qualitative. Later, as vacuum techniques improved, the beautiful results of the Cavendish Laboratory led to many of the most fundamental advances in atomic physics. Electrical discharge studies gradually became refined and the importance of gas purity to achieve reproducible results was recognized. Hence, many discharge experiments were performed using the rare gases, the simpler diatomic gases and some metal vapors. Thus it seems that Irving Langmuir’s favorite discharge was that in mercury vapor because of its compatibility with mercury diffusion pumps. After 1940 the interest in discharges in gas mixtures and in complex molecular gases declined because it was difficult to make quantitative analyses or even to obtain reproducible results. At that time film depositions and sputtering were generally considered nuisances.

Keywords

Laser Induce Fluorescence Tunable Laser Diode Absorption Spectroscopy Fringe Shift Photodetachment Cross Section Laser Induce Fluorescence Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attal, B., Debarre, D., Muller-Dethlefs, K., and Taran, J. P. E., 1984, Revues des Physique Appliquee, 18:39.CrossRefGoogle Scholar
  2. Bacal, M., 1982, Physics Scripta, T2:467.CrossRefGoogle Scholar
  3. Bethune, D. S., Schell-Sorokin, A. J., Lankard, J. R., Loy, M. M. T., and Sorokin, P. P., 1983, in: “Adv. in Laser Spectroscopy,” Vol 2, eds B. A. Garity and J. R. Lombardi, John Wiley & Sons, New York.Google Scholar
  4. Bjorklund, G. C., 1980, Opt. Lett., 5:15.CrossRefGoogle Scholar
  5. Boutilier, G. D., Blackburn, M. B., Mermet, J. M., Weeks, S. J., Haraguchi, H., and Winefordner, J. D., 1978, Appl. Optics, 17:2291.CrossRefGoogle Scholar
  6. Braun, V. R., Krasnoperov, L. N., and Panfilov, V. N., 1981, Doklady Akademii Nauk SSSR, 260:901.Google Scholar
  7. Braun, V. R., Krasnoperov, L. N., and Panfilov, V. N., 1981, Catalysts, 22:1332.Google Scholar
  8. Bulatov, E. D., Kozlov, D. N., Otlivanchik, E. A., Pashinin, P. P., Prokhorov, A. M., Sisakyan, I. N., and Smirnov, V. V., 1980, Sov. J. Quantum Electron, 10:740.CrossRefGoogle Scholar
  9. Cornelissen, H. J. and Burgmans, A. L. J., 1982, Opt. Commun., 41:187.CrossRefGoogle Scholar
  10. Crosley, D. R. and Smith, G. P., 1983, Optical Engineering, 22:545.CrossRefGoogle Scholar
  11. Dailey, J. W., 1977, Appl. Opt., 15:568.CrossRefGoogle Scholar
  12. DeJoseph, C. A., Garscadden, A., and Pond, D. R., 1983, in: “Proceedings, International Conference on Lasers,” V. Corcoran, ed., 1982:738.Google Scholar
  13. Donnelly, V. M., Flamm, D. L., and Collins, G. J., 1982, J. Vac. Sci. Technology, 21:817.CrossRefGoogle Scholar
  14. Doughty, D. K., Salih, S., and Lawler, J. E., 1984, Phys. Lett., 103A:41.Google Scholar
  15. Dreier, T., Weilhausen, U., Wolfrum, J., and Marowsky, G., 1982, Appl. Phys., B29:31.Google Scholar
  16. Druet, S., Attal, B., Gustafson, T. K., and Taran, J. P. E., 1978, Phys. Rev., A18:1529.Google Scholar
  17. Dyer, M. J. and Crosley, D. R., 1982, Optics Lett., 7:382.CrossRefGoogle Scholar
  18. Eckbreth, A. C., and Hall, R. J., 1981, Combustion Science and Technology, 25:175.CrossRefGoogle Scholar
  19. Eng, R. S. and Ku, R. T., 1982, Spectroscopy Letters, 15:803.CrossRefGoogle Scholar
  20. Foster, J. S., 1927, Proc. Roy. Soc., A114:47.Google Scholar
  21. Freeman, R. R., Liao, P. F., Panock, R. and Hymphrey, L. M., 1980, Phys. Rev. A22:1510.Google Scholar
  22. Gerardo, J. B. and Verdeyen, J. T., 1964, Proc. IEEE, 52:690.CrossRefGoogle Scholar
  23. Goldsmith, J. E. M. and Anderson, R. J. M., 1985, Appl. Optics, 24:607.CrossRefGoogle Scholar
  24. Goss, L., 1985, private communication.Google Scholar
  25. Gottscho, R. A., Burton, R. H., Flamm, D. L., Donnelly, V. M., and Davis, G. P., 1984, J. Appl. Phys., 55:2707.CrossRefGoogle Scholar
  26. Gudeman, C. S., Begemann, M. H., Pfaff, J., and Saykally, R. J., 1983, Phys. Rev. Lett., 50:727.Google Scholar
  27. Guthals, D. M., Gross, K. P., and Nibler, J. W., 1979, J. Chem. Phys., 70:2393.CrossRefGoogle Scholar
  28. Haese, N. H., Pan, F-S, and Oka, T., 1983, Phys. Rev. Lett., 50:1575.CrossRefGoogle Scholar
  29. Harmin, D. A., 1985 in: “Atomic Excitation and Recombination in External Fields,” M. H. Nayfeh and C. W. Clark, eds., Harwood Press, New York.Google Scholar
  30. Hata, N., Matsuda, A., Tanaka, K., Kajiyama, K., Moro,., and Sajiki, K., 1983, Japan J. Appl. Phys., 22:L1.CrossRefGoogle Scholar
  31. Hinshelwood, D., 1985, NRL Memorandum Report, No. 4592.Google Scholar
  32. Jasinski, J. M., Whittaker, E. A., Bjorklund, G. C., Dreyfus, R. W., and Estes, R. D., 1984, Appl. Phys. Lett., 44:1155.CrossRefGoogle Scholar
  33. Johnson, W. B., 1967, IEEE Trans. Antennas and Propagation, AP-15:152.CrossRefGoogle Scholar
  34. Knapp, K. and Hanson, R. K., 1983, Appl. Optics, 22:1980.CrossRefGoogle Scholar
  35. Krasnoperov, L. N., Braun, V. R., Nosov, V. V., and Panfilov, V. N., 1981, Kinetics and Catalysts, 22:1332.Google Scholar
  36. Kushner, M. J., private communication.Google Scholar
  37. Kychakoff, G., Howe, R. D., Hanson, R. K., and McDaniel, J. C., 1982, Appl. Optics, 21:3225.CrossRefGoogle Scholar
  38. Littman, M. G., Kash, M. M. and Kleppner, D., 1978, Phys. Rev. Lett., 41:103.CrossRefGoogle Scholar
  39. Luhmann, N. C. and Peebles, W. A., 1984, Rev. Sci. Instrum., 55:279.CrossRefGoogle Scholar
  40. Moore, C. A., Davis, G. P., and Gottscho, R. A., 1984, Phys. Rev. Lett., 52:538.CrossRefGoogle Scholar
  41. Musai, H. M., 1969, Proc. IEEE, 57:98.CrossRefGoogle Scholar
  42. Nitsch, W. and Kiefer, W., 1977, Optics Comm., 23:240.CrossRefGoogle Scholar
  43. Oda, T., Usia, T., Takiyama, K., Fujita, T., Kamiura, Y., and Kawasaki, K., 1984, in: “Proceedings, Japan Workshop on Tokomak Diagnostics,” Inst. Plasma Physics Report IPPJ-703, Nagoya, Japan.Google Scholar
  44. Oka, T., 1980, Phys. Rev. Lett., 45:431.CrossRefGoogle Scholar
  45. Pealat, M., Taran, J. P. E., Taillet, J. Bacal, M., and Bruneteau, A. M., 1981, J. Appl. Phys., 52:2687.CrossRefGoogle Scholar
  46. Rozhdestvenskii, D. S., 1912, Ann. Phys., 39:307.Google Scholar
  47. Schlossberg, H. R., 1976, J. Appl. Phys., 47:2044.CrossRefGoogle Scholar
  48. Schlossberg, H. R. and Kelley, P. L., 1981 in: “Spectrometric Techniques, II,” Ch 4, G. Vanesse, ed., Academic Press, New York.Google Scholar
  49. Shaub, W. M., Nibler, J. W., and Harvey, A. B., 1977, J. Chem. Phys., 67:1883.CrossRefGoogle Scholar
  50. Smirnov, V. V. and Gabelinskii, V. I., 1978, JETP Lett., 28:427.Google Scholar
  51. Stanton, A. C. and Kolb, C. E., 1980, J. Chem. Phys., 72:6637.CrossRefGoogle Scholar
  52. Taillet, J., 1969, Compt. Rend., 269:352.Google Scholar
  53. Tolles, W. M., Niblr, J. W., McDonald, J. R., and Harvey, A. B., 1977, Appl. Spectroscopy, 31:253.CrossRefGoogle Scholar
  54. van der Weijer, P. and Cremers, R. M. M., 1982, J. Appl. Phys., 53:1401.CrossRefGoogle Scholar
  55. Verdieck, J. F., Shirley, J. A., Hall, R. J., and Eckbreth, A. C., 1982 in: “Temperature: Measurements and Control in Science and Industry,” 5:595,J. F., Schooley, ed., American Inst. of Physics, New York.Google Scholar
  56. Vieman, C. and Hansch, T. W., 1976, Phys. Rev. Lett., 361170.Google Scholar
  57. Wing, W. H., Ruff, G. A., Lamb Jr., W. E., and Spezeki, J. J., 1976, Phys. Rev. Lett., 36:1488.CrossRefGoogle Scholar
  58. Wormhoudt, J., Stanton, A. C., and Silver, J., 1983, in: “Proceedings, SPI,” Vol. 452.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Garscadden
    • 1
  1. 1.Air Force Wright Aeronautical LaboratoriesWright-Patterson AFBUSA

Personalised recommendations