High-Pressure Sodium (HPS) ARCS

  • D. O. Wharmby
Part of the NATO ASI Series book series (ASIB, volume 149)


The high-pressure sodium lamp, invented some 25 years ago (Schmidt, 1961), has become one of the most successful commercial lamps. It has a high luminous efficiency (80–140 lm/W depending on input power) and an acceptable color; it is only surpassed in luminous efficiency by the monochromatic low-pressure sodium arc. Its uses are in outdoor lighting, especially street lighting, and in special indoor applications for which good color quality is not required. The increasing cost of electrical power inevitably means that this lamp is being used to replace less efficient sources such as high-pressure mercury (~60 lm/W), despite the apparent longevity of the latter.


Positive Column Radiation Transport Ambipolar Diffusion Luminous Efficiency High Luminous Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akutsu, H., 1984, Lighting Res. & Tech., 16:73.CrossRefGoogle Scholar
  2. Cayless, M. A. and Clarke, M. G., 1963, “Improvements to Sodium Vapor Electric Discharge Lamps”, British Patent 937938.Google Scholar
  3. Cayless, M. A., 1985, “Radiation Transport in High-Pressure Discharge Lamps”, this ASI.Google Scholar
  4. Dakin, J. T., and Rautenberg, T. H., 1984, J. Appl. Phys., 56:118.CrossRefGoogle Scholar
  5. Denbigh, P. L., Jones, B. F. and Mottram, D. A. J., 1983, J. Phys. D. Appl. Phys., 16:2167.CrossRefGoogle Scholar
  6. Denbigh, P. L., Jones, B. F., and Mottram, D. A. J., 1985, IEE Proc., 132A:99.Google Scholar
  7. Düren, R., 1977, J. Phys. B., 10:3467.CrossRefGoogle Scholar
  8. Eardley, G., Jones, B. F., Mottram, D. A. J. and Wharmby, D. O., 1979, J. Phys. D: Appl. Phys., 12:1101.CrossRefGoogle Scholar
  9. Griem, H. R., 1964, “Plasma Spectroscopy”, McGraw-Hill, New York.Google Scholar
  10. Griem, H. R., 1974, “Spectral Line Broadening in Plasmas”, Academic Press, New York.Google Scholar
  11. de Groot, J. J. and Jack, A. G., 1973, J. Quant. Spectrosc. Radiat. Transfer, 13:615.CrossRefGoogle Scholar
  12. de Groot, J. J., 1974, “Investigation of the High Pressure Sodium and Mercury/Tin Iodide Arc”, Thesis, Technical University, Eindhoven.Google Scholar
  13. de Groot, J. J. and van Vliet, J. A. J. M. 1975, J. Phys. D: Appl. Phys., 8:651.CrossRefGoogle Scholar
  14. Hindmarsh, W. R. and Farr, J. M., 1972, Prog. Quantum Electron., 2:143.Google Scholar
  15. Hirayama, C., Andrew, K. F. and Kleinosky, R. L., 1981, Thermochimica Acta, 45:23.CrossRefGoogle Scholar
  16. Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B., 1954, “Molecular Theory of Gases and Liquids”, Wiley, New York.Google Scholar
  17. Jongerius, M. J., Hollander, Tj. and Alkemade C. Th. J., 1981, J. Quant. Spectrosc. Radiat. Transfer, 26:285.CrossRefGoogle Scholar
  18. Froment, N. M., Radmore, P. M. and Stephenson, G., 1981, J. Phys. A: Math. Gen., 14:2201.CrossRefGoogle Scholar
  19. Lowke, J. J., 1969, J. Quant. Spectrosc. Radiat. Transfer, 9:839.CrossRefGoogle Scholar
  20. Lowke, J. J., Zollweg, R. and Liebermann, R. W., 1975, J. Appl. Phys., 46:650.CrossRefGoogle Scholar
  21. Lowke, J. J., 1979, J. Appl. Phys., 50:147.CrossRefGoogle Scholar
  22. Lapworth, K. C., 1980, “Development of Bartels’ Theory of Radiation from an Inhomogeneous Layer and Extensions to the Theory”, NPL Report, Qu55.Google Scholar
  23. McVey, C. I., 1980, IEE Proc., 127A:165.Google Scholar
  24. Mottram, D. A. J., 1980, in: “Industrial Uses of Thermochemical Data”, T. I. Barry, ed., Chemical Society, London.Google Scholar
  25. Otani, K., 1983, J. Light & Vis. Env., 7:59.CrossRefGoogle Scholar
  26. Reiser, P. A. and Wyner, E. F., 1985, J. Appl. Phys., 57:1623.CrossRefGoogle Scholar
  27. Schmidt, K., 1961, “Metal Vapor Lamps”, U.S. Patent 2971110.Google Scholar
  28. Shuker, A., Gallagher, A. and Phelps, A. V., 1980, J. Appl. Phys., 51:1306.CrossRefGoogle Scholar
  29. Sobel’man, I. I., 1972, “An Introduction to the Theory of Atomic Spectra”, Pergamon, Oxford.Google Scholar
  30. Stormbery, H-P., 1980, J. Appl. Phys., 51:1963.CrossRefGoogle Scholar
  31. van Vliet, J. A. J. M. and de Groot, J. J., 1981, IEE Proc., 128A:415.Google Scholar
  32. Waszink, J. H., 1973, J. Phys. D. Appl. Phys., 6:1000.CrossRefGoogle Scholar
  33. Waszink, J. H., 1975, J. Appl. Phys., 46:3139.CrossRefGoogle Scholar
  34. Wiese, W. C., Smith, M. W. and Miles, B. M., 1969, “Atomic Transition Probabilities”, Vol 2, NBS, Washington.Google Scholar
  35. Wharmby, D. O., 1980, IEE Proc., 127A:165.Google Scholar
  36. Wharmby, D. O., 1984, J. Phys. D. Appl. Phys., 17:367.CrossRefGoogle Scholar
  37. Wharmby, D. O., 1985, “Molecular Spectral Intensities in LTE Plasmas”, this ASI.Google Scholar
  38. Woerdman, J. P. and de Groot, J. J., 1982, J. Chem. Phys., 76:5653.CrossRefGoogle Scholar
  39. Zollweg, R. J. and Kussmaul, K. L., 1983, Lighting Res. & Tech., 15:179.CrossRefGoogle Scholar
  40. Zwicker, H., 1968, in: “Plasma Diagnostics”, W. Lochte-Holtgreven, ed., North-Holland, Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. O. Wharmby
    • 1
  1. 1.Research and Engineering DivisionThorn EMI Lighting LimitedLeicesterEngland

Personalised recommendations