Advertisement

Proteases, Their Inhibitors and the Extracellular Matrix: Factors in Nerve-Muscle Development and Maintenance

  • B. W. Festoff
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 209)

Abstract

Over the last decade, the basement membrane or basal lamina of the adult skeletal muscle fiber has been emphasized as playing an important, if not critical, role in muscle regeneration after injury[1-9]. A concept of considerable stability and persistence of this structure or several components of it, has developed from studies principally in the frog that suggest it has major roles in the reinnervation of denervated adult muscle over and above any potential contributions by the principal cellular elements: nerve axon, Schwann cell or muscle fiber itself, in this process[10, 11]. In the last few years other studies suggest that one or more macro- molecules within the synaptic region of the basement membrane influence or cause the accumulation of acetylcholine receptors (AChRs) in the absence of the nerve[12,13]. Using much the same experimental paradigm, these same authors conclude that the same or different molecules, ‘stably’ attached to the synaptic basal lamina, regulate or ‘direct’ the accumulation of acetylcholinesterase (AChE), again at original synaptic sites[14].

Keywords

Amyotrophic Lateral Sclerosis Plasminogen Activator Basal Lamina Amyotrophic Lateral Sclerosis Patient Basement Membrane Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Allbrook, Skeletal muscle regeneration, Muscle & Nerve, 4: 234–245 (1981).CrossRefGoogle Scholar
  2. 2.
    R. Vracko and E. P. Benditt, Basal lamina: the scaffold for orderly cell replacement, observations on regeneration of injured skeletal muscle fiber and capillaries, J. Cell Biol., 55: 406–419 (1972).PubMedCrossRefGoogle Scholar
  3. 3.
    A. K. Gulati, A. H. Reddi, and A. A. Zalewski, Changes in the extra cellular matrix components laminin and fibronectin during immune rejection of skeletal muscle, Anatomical Record, 204: 175–183 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    A. K. Gulati, A. H. Reddi, and A. A. Zalewski, Changes in the basement components during skeletal muscle fiber degeneration and regeneration, J. Cell Biol., 97: 957–962 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    A. K. Gulati, A. A. Zalewski, and A. H. Reddi, An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration, Dev.Biol., 96: 355–365 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    A. K. Gulati, Basement membranes component changes in skeletal, muscle transplants undergoing regeneration or rejection, J. Cell. Biochem., 27: 337–346 (1985).PubMedCrossRefGoogle Scholar
  7. 7.
    J. R. Sanes and J. C. Lawrence, Jr., Activity dependent accumulation of basal lamina by cultured rat myotubes, Dev. Biol., 97: 123–136 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    J. R. Sanes, Roles of extracellular matrix in neuronal development, Ann. Rev. Physiol., 45: 581–600 (1983).CrossRefGoogle Scholar
  9. 9.
    L. Anglister and U. J. McMahan, Extracellular matrix components involved in neuromuscular transmission and regeneration, Ciba Foundation Symposium, 108: 163–178 (1984).PubMedGoogle Scholar
  10. 10.
    M. S. Letinsky, K. H. Fischbeck, and U. J. McMahan, Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush, J. Neurocytol., 5: 691–718 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    J. R. Sanes, L. M. Marshall, and U. J. McMahan, Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons of original synaptic sites, J. Cell Biol., 78: 176–198 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    S. Burden, P. Sargent, and U. J. McMahan, Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve, J.Cell Biol., 82: 412–425 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    R. M. Nitkin, B. G. Wallace, M. E. Spira, et al., Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions, Cold Spring Harbor Symp., 48: 653–665 (1983).CrossRefGoogle Scholar
  14. 14.
    L. Anglister and U. J. McMahan, Basal lamina directs acetylcholine esterase accumulation at synaptic sites in regenerating muscle, J. Cell Biol., 101: 735–743 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    D. C. Van Essen, Neuromuscular synapse elimination, in: “Neuronal Development”, N. C. Spitzer, ed., pp. 333–376, Plenum Press, New York (1982).Google Scholar
  16. 16.
    D. Purves and J. W. Lichtman, Elimination of synapses in the developing nervous system, Science, 210: 153–157 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Purves and J. W. Lichtman, “Principles of Neural Development”, Sinauer, Sunderland, Massachusetts (1984).Google Scholar
  18. 18.
    D. Wigston and J. Sanes, Selective reinnervation of adult mammalian muscle by axons from different segmental levels, Nature, 299: 464–467 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    J. L. Bixby and D. C. Van Essen, Competition between foreign and original nerves in adult mammalian skeletal muscle, Nature (London), 282: 276–278 (1979).CrossRefGoogle Scholar
  20. 20.
    B. W. Festoff, Role of neuromuscular junction macromolecules in the pathogenesis of amyotrophic lateral sclerosis, Med. Hypotheses, 6: 121–131 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    E. D. Hay, ed., “Cell Biology of the Extracellular Matrix”, Plenum Press, New York (1982).Google Scholar
  22. 22.
    R. Timpl, Molecular aspects of basement membrane structure, Prog. Clin.Biol.Res., 171: 63–74 (1985).PubMedGoogle Scholar
  23. 23.
    N. A. Kefalides, R. Alper, and C. C. Clark, Biochemistry and metabolism of basement membranes, Int.Rev.Cytol., 61: 167–228 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Timpl and G. R. Martin, in: “Immunochemistry of the Extracellular Matrix”, Vol.2, H. Furthmayer, ed., CRC Press, Boca Raton (1982).Google Scholar
  25. 25.
    H. L. Fernandez, M. J. Duell, and B. W. Festoff, Cellular distribution of 16S acetylcholinesterase, J.Neurochem., 32: 581–585 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    H. L. Fernandez, M. J. Duell, and B. W. Festoff, Neurotrophic regulation of 16S acetylcholinesterase at the vertebrate neuromuscular junction, J.Neurobiol., 10: 442–454 (1979).CrossRefGoogle Scholar
  27. 27.
    H. L. Fernandez, M. J. Duell, and B. W. Festoff, Bi-directional axonal transport of 16S acetylcholinesterase in rat sciatic nerve, J.Neurobiol., 10: 31–39 (1980).CrossRefGoogle Scholar
  28. 28.
    B. W. Festoff, Release of acetylcholinesterase in amyotrophic lateral sclerosis, in: “Pathogenesis of Human Motor Neuron Diseases”, L. P. Rowland, ed., pp. 503 - 516, Raven Press, New York (1982).Google Scholar
  29. 29.
    J. Massouli£, The polymorphism of cholinesterase and its physiological significance, Trends Biochem.Sci., 5: 160–164 (1980).CrossRefGoogle Scholar
  30. 30.
    S. Bon, J. Cartaud, and J. Massouli£, The dependence of acetylcholine esterase aggregation at low ionic strength upon a polyanionic component, Eur.J.Biochem., 85: 1–14 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Sketelj, and M. Brzin, Attachment of acetylcholinesterase to structures of the motor endplate, Histochem., 61: 239–248 (1979).CrossRefGoogle Scholar
  32. 32.
    J. Grassi, J. Massouli£, and R. Timpl, Relationship of collagen-tailed acetylcholinesterase with basal lamina components absence of binding with laminin, fibronectin and collagen types IV and V and lack of reactivity with different anti-collagen sear, Eur.J. Biochem., 133: 31–38 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Vigny, G. R. Martin, and G. R. Grotendorst, Interactions of asymmetric forms of acetylcholinesterase with basement membrane components, J.Biol.Chem., 258: 8794–8798 (1983).PubMedGoogle Scholar
  34. 34.
    E. Brandan and N. C. Inestrosa, Binding of the asymmetric forms of acetylcholinesterase to heparin, Biochem.J., 221: 415–422 (1984).PubMedGoogle Scholar
  35. 35.
    E. Brandan, M. Moldonado, J. Garrido, and N. C. Inestrosa, Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparin sulfate proteoglycan, J.Cell Biol., 101: 985–992 (1985).PubMedCrossRefGoogle Scholar
  36. 36.
    H. L. Fernandez and M. J. Duell, Protease inhibitors reduce effects of denervation on muscle endplate acetylcholinesterase, J. Neurochem. (1980).Google Scholar
  37. 37.
    H. L. Fernandez, M. R. Patterson, and M. J. Duell, Neurotrophic control of 16S acetylcholinesterase from mammalian skeletal muscle in organ culture, J.Neurobiol., 11: 557–570 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    B. W. Festoff, Protocol for a model therapeutic trial in amyotrophic lateral sclerosis, in: “Research Progress in Motor Neurone Disease”, F. C. Rose, ed., pp. 432–442, Pitman, London (1984).Google Scholar
  39. 39.
    B. W. Festoff, K. L. Oliver, and N. B. Reddy, In vitro studies of muscle membranes. Effects of denervation on the macromolecular components of cation transport in red and white skeletal muscle, J.Membr.Biol., 32:345–360 (1977).Google Scholar
  40. 40.
    D. Hantai and B. W. Festoff, Muscle adhesive basement membrane proteins are degraded by plasminogen activator in the presence of plasminogen, in: “Molecular Neurobiology”, E. Kandel and R. Levi- Montalcini, eds., Springer-Verlag, Berlin (1986) (in press).Google Scholar
  41. 41.
    B. W. Festoff, M. R. Patterson, and K. Romstedt, Plasminogen activator: the major secreted neutral protease of cultured skeletal muscle cells, J.Cell.Physiol., 110: 190–195 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    B. W. Festoff, M. R. Patterson, D. Eaton, and J. B. Baker, Plasminogen activator and protease nexin in myogenesis, J.Cell.Biol., 91: 43a (1981).Google Scholar
  43. 43.
    M. Ramby, B. Norman, and P. Wallen, A sensitive assay for tissue plasminogen activator, Thromb.Res., 27: 743–748 (1982).CrossRefGoogle Scholar
  44. 44.
    A. Granelli-Piperno and E. Reich, A study of protease and protease inhibitor complexes in biological fluids, J. Exp. Med., 148: 223–234 (1983).CrossRefGoogle Scholar
  45. 45.
    A. Smokovitis and T. Astrup, Localization of fibrinolytic activity and inhibition of plasmin in the spinal cord of rat, guinea pig and rabbit, J. Neurosurg., 48: 1008–1014 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    K. Danø, P. A. Andreasen, J. Grøndahl-Hansen, P. Kristensen, L. S. Nielsen, and L. Skriver, Plasminogen activators, tissue degradation and cancer, Adv.Cancer Res., 40: 139–266 (1985).CrossRefGoogle Scholar
  47. 47.
    D. L. Eaton and J. B. Baker, Evidence that a variety of cultured cells secrete protease nexin and produce a distinct cytoplasmic serine protease-binding factor, J.Cell Physiol., 117: 175–182 (1983).PubMedCrossRefGoogle Scholar
  48. 48.
    J. B. Baker, D. A. Low, R. L. Simmer, and D. D. Cunningham, Protease nexin: a cellular component that links thrombin and plasminogen activator and mediates their binding to cells, Cell, 21: 37–45 (1980).PubMedCrossRefGoogle Scholar
  49. 49.
    J. B. Baker, D. A. Low, D. L. Eaton, and D. D. Cunningham, Thrombin mediated mitogenesis: the role of secreted protease nexin, J.Cell. Physiol., 112: 291–297 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    B. Wiman, G. Mellbring, and M. Ranby, Plasminogen activator release during venous stasis and exercise as determined by a new specific assay, Clin.Chem.Acta, 127: 279–288 (1983).CrossRefGoogle Scholar
  51. 51.
    B. W. Festoff and H. L. Fernandez, Plasma and red cell acetylcholine esterase in amyotrophic lateral sclerosis, Muscle and Nerve, 4: 41–47 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    D. C. Rijken and D. Collen, Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture, J.Biol.Chem., 256: 7035–7041 (1981).PubMedGoogle Scholar
  53. 53.
    H. M. Fullmer, H. D. Seidler, R. S. Krooth, and L. T. Kurland, A cutaneous disorder of connective tissue in amyotrophic lateral sclerosis, Neurology (Minneap.), 10: 717–721 (1960).CrossRefGoogle Scholar
  54. 54.
    H. M. Fullmer, W. A. Gibson, G. Lazarus, A. C. Stam, Jr., and C. Link, Collagenolytic activity of the skin associated with neuromuscular diseases including amyotrophic lateral sclerosis, Lancet, 1: 1007–1009 (1966).PubMedCrossRefGoogle Scholar
  55. 55.
    L. Beach, E. T. Reyes, B. W. Festoff, R. Yanagihara, D. C. Gajdusek, and J. S. Rao, Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis, J.Neurol.Sci. 72: 49–60 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    Z. Werb and J. Aggeler, Proteases induce secretion of collagenase and plasminogen activator by fibroblasts, Proc.Natl.Acad.Sci., USA., 75: 1839–1843 (1978).PubMedCrossRefGoogle Scholar
  57. 57.
    M. Senior and E. J. Campbell, Neutral proteinases from human inflammatory cells, Clin.Lab.Med., 3: 645–666 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • B. W. Festoff
    • 1
  1. 1.Department of NeurologyUniversity of Kansas College of Health Sciences and Medical Investigator Kansas City Veterans Administration, Medical CenterKansas CityUSA

Personalised recommendations