GM2 Gangliosidosis with a Motor Neuron Disease Phenotype: Clinical Heterogeneity of Hexosaminidase Deficiency Disease

  • A. Federico
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 209)


The existence of families in which amyotrophic lateral sclerosis (ALS) is present, transmitted by an autosomal dominant trait, is well-known. In contrast with these more common cases, only a few familial cases occur with a pattern suggesting autosomal recessive inheritance. These genetic cases have recently stimulated research into the genetic dismetabolic conditions that could cause a phenotype similar to ALS or motor neuron diseases. In such families with atypical ALS cases, several typical Tay Sachs1 disease patients have been found[l]. In a screening program for Tay Sachs’ disease, several cases with a motor neuron phenotype and an absence of hexosaminidase activity were found [2]. The same enzyme defect has been reported in young patients with a phenotype similar to juvenile muscular atrophy, Kugelberg-Welander phenotype [3], confirming that primary pathological changes of anterior horn cells can be possible in several cases with juvenile, infantile and adult forms of GM2 gangliosidosis. These forms are clinically characterized by a slow evolution and biochemically by an incomplete absence of hexosaminidase A or B or both.


Amyotrophic Lateral Sclerosis Motor Neuron Disease Anterior Horn Cell Sandhoff Disease Sporadic Amyotrophic Lateral Sclerosis Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Navon, Z. Argov, N. Brand, and A. Sandback, Adult GM2 gangliosidosis in association with Tay Sachs disease: a new phenotype, Neurology, 31: 1397–1401 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    M. G. Yaffe, M. Kaback, M. Goldberg, et al., An amyotrophic lateral sclerosis-like syndrome with hexosaminidase A deficiency: a new type of GM2 gangliosidosis (abst)., Neurology, 29: 611 (1979).Google Scholar
  3. 3.
    W. G. Johnson, N. H. Wigger, H. R. Karp, et al., Juvenile spinal muscular atrophy: a new hexosaminidase deficiency phenotype, Ann. Neurol., 11: 11–16 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    F. Gilbert, R. Kucherlapati, R. P. Creagan, M. J. Murnana, G. J. Darlington, and F. H. Ruddle, Tay Sachs’ and Sandhoff’s disease: the assignment of genes for hexosaminidase A and B to individual human chromosomes, Proc. Nat. Acad. Sci., 72: 263–267 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    W. G. Johnson, The clinical spectrum of hexosaminidase deficiency disease, Neurology, 31: 1431–1456 (1981).CrossRefGoogle Scholar
  6. 6.
    I. Rapin, K. Suzuki, and M. P. Valsalmis, Adult GM2 gangliosidosis: atypical spinocerebellar degeneration in a Jewish sibship, Arch. Neurol., 33: 120–130 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    W. D. Goldie, D. Holtzman, and K. Suzuki, Chronic hexosaminidase A and B deficiency, Ann. Neurol., 2: 156–158 (1977).CrossRefGoogle Scholar
  8. 8.
    M. Kaback, J. Miles, M. Jaffe, et al., Hexosaminidase A deficiency in early adulthood: a new type of GM2 gangliosidosis (abst), Am. J. Hum. Genet., 30: 31A (1978).Google Scholar
  9. 9.
    J. P. Willner, A. N. Bender, L. Strauss, et al., Total 3-hexosaminidase A deficiency in two adult Ashkenazy Jewish siblings: report of a new variant (abst), Am. J. Hum. Genet., 31: 86A (1979).Google Scholar
  10. 10.
    R. Navon, N. Brand, and A. Sandback, Adult GM2 gangliosidosis: neuro logic and biochemical findings in an apparently new type (abst), Neurology, 30: 449–450 (1980).Google Scholar
  11. 11.
    K. Jellinger, A. P. Anzil, D. Seemann, and H. Bernheimer, Adult GM2 gangliosidosis masquerading as slowly progressive muscular atrophy: motor neuron disease phenotype, Clin. Neuropath., 1: 31–44 (1982).Google Scholar
  12. 12.
    S. Parnes, G. Karpati, S. Carpenter, et al., Juvenile GM2 ganglio sidosis mimics juvenile spinal muscular atrophy (abst), Neurology, 33 (2): 79 (1983).Google Scholar
  13. 13.
    A. J. D. Dale, A. G. Engel, and N. L. Rudd, Familial hexosaminidase A deficiency with Kugelberg-Welander phenotype and mental changes (abst), Ann. Neurol., 14: 109 (1983).Google Scholar
  14. 14.
    A. Barbeau, L. Plasse, T. Cloutier, S. Paris, and M. Roy, Lysosomal enzymes in ataxia: discovery of two new cases of late onset hexosaminidase A and B deficiency (Adult Sandhoff Disease) in French Canadians, Can. J. Neurol. Sci., 11: 601–606 (1984).PubMedGoogle Scholar
  15. 15.
    Z. Argov, and R. Navon, Clinical and genetic variations in the syndrome of adult GM2 gangliosidosis resulting from hexosaminidase A deficiency, Ann. Neurol., 16: 14–20 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Mitsumoto, R. J. Sliman, I. A. Schafer, C. S. Sternick, et al., Motor neuron disease and adult hexosaminidase A deficiency in two families: evidence for multisystem degeneration, Ann. Neurol., 17: 378–385 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    G. C. Guazzi, N. Rizzuto, G. Ciacci, I. D’Amore, and A. Rossi, Polineuritiform spino-cerebellar ataxia with dominant autosomic transmission, Acta Neurol., 5: 303–304 (1983).Google Scholar
  18. 18.
    A. Federico, G. Ciacci, I. D’Amore, R. Pallini, S. Palmeri, A. Rossi, and G. C. Guazzi, GM2 gangliosidosis with hexosaminidase A and B defect: report of a family with motor neuron disease like phenotype, J. Inher. Metab. Dis., 9 (Suppl.2) (1986) in press.Google Scholar
  19. 19.
    E. Conzelman, and K. Sandhoff, Partial enzyme deficiencies: residual activities and the development of neurologic disorders, Dev. Neurosci., 6: 58–71 (1984).CrossRefGoogle Scholar
  20. 20.
    S. Ashwal, T. V. Thrasher, D. R. Rice, and D. A. Wenger, A new form of sea blue histiocytosis associated with progressive anterior horn cell and axonal degeneration, Ann. Neurol., 16: 184–192 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    Y. Miyata, A new mouse mutant with motor neuron disease, Dev. Brain Res., 10: 139–142 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Federico
    • 1
  1. 1.Institute of Neurological Sciences and Center for Research on Genetic Encephalo-Neuro-MyopathiesUniversity of SienaItaly

Personalised recommendations