Generalized Perturbation Theory (GPT) Methods. A Heuristic Approach

  • Augusto Gandini
Part of the Advances in Nuclear Science and Technology book series (ANST, volume 19)


Since the beginning of nuclear reactor physics studies, perturbation theory has played an important role. As well known, it was first proposed by Wigner(1) as early as 1945 to study fundamental quantities such as the reactivity worths of different materials. This first formulation, which we shall call CPT for conventional perturbation theory, is based on well known quantum mechanics concepts. Since that early proposal, significant contributions have been given to CPT by different authors. We remind, in particular, Soodak(2) who gave a heuristic interpretation of the adjoint function, viewed as proportional to the importance of the neutrons in relation to the asymptotic power of a critical, multiplying, system, and Usachev,(3) who derived a consistent CPT formulation including also the effective prompt neutron lifetime and the effective delayed neutron fraction.


Source Term Fundamental Mode Neutron Density Importance Function Neutron Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Wigner, “Effect of Small Perturbations on Pile Period,” Chicago Report CP-G-3048 (1945).Google Scholar
  2. 2.
    H. Soodak, “The Science and Engineering of Nuclear Power,” United Nations, New York (1948).Google Scholar
  3. 3.
    L. N. Usachev, “Equation for the Importance of Neutrons, Reactor Kinetics and the Theory of Perturbation in Proceed. First ICPUAE,” Vol. 5, United Nations, Geneva (1955).Google Scholar
  4. 4.
    J. Lewins, “The Time Dependent Importance of Neutrons and Precursors,” Nucl. Sci. Eng., 7, 268–274, (1960).Google Scholar
  5. 5.
    B. B. Kadomtzev, “On the Importance Function in Radiation Transport Theory,” Dokl. An. USSR, 113, N. 3 (1957).Google Scholar
  6. 6.
    P. M. Morse and H. Feshbach, “Methods of Theoretical Physics,” McGraw-Hill, New York (1953).MATHGoogle Scholar
  7. 7.
    L. S. Pontryagin, V. G. Boltyanski, P. V. Gramkrelidze, E. F. Mischenko, “The Mathematical Theory of Optimal Process,” Interscience, New York (1962).Google Scholar
  8. 8.
    L. N. Usachev, “Perturbation Theory for the Breeding Factor and Other Ratios of Different Processes in a Reactor”, Atommaya Energiya, 15, 472–481 (1963). See also: L. N. Usachev and S. M. Zariski, Atomizdat, 2, 242 (1965).Google Scholar
  9. 9.
    J. Lewins, “Importance, the Adjoint Function,” Pergamon Press, Oxford (1965).Google Scholar
  10. 10.
    G. Pomraning, “Variational Principle for Eigenvalue Equations,” J. Math. Phys., 8, 149–160 (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    A. Gandini, “A Generalized Perturbation Method for Bi-Linear Functionals of the Real and Adjoint Neutron Fluxes”, J. of Nuclear Energy, 21, 755–765 (1967). See also: Nucl. Sci. Eng., 35, 141–144 (1969), 38, 1–7 (1969) and 67, 91–106 (1978).Google Scholar
  12. 12.
    A. Gandini, “Generalized Perturbation Theory for Nonlinear Systems from the Importance Conservation Principle,” Nucl. Sci. Eng., 77, 316–343 (1981). See also: CNEN Report RT/FI (81) 28, Rome (1981).Google Scholar
  13. 13.
    W. M. Stacey, Jr., “Variational Methods in Nuclear Reactor Physics,” Academic Press, New York (1974). See also: Nucl. Sci. Eng., 48, 444–458 (1972).Google Scholar
  14. 14.
    Y. Seki, “Evaluation of the Second-Order Perturbation Terms by the Generalized Perturbation Method,” Nucl. Sci. Eng., 51, 243–251 (1973).Google Scholar
  15. 15.
    Y. Ronen, “A Note on the Adjoint Function in Time Dependent Reactor Theory,” Annals of Nucl. Sci. Engineering, 1, 513–515 (1974).Google Scholar
  16. 16.
    E. Greenspan, “Developments in Perturbation Theory,” Advances in Nucl. Sci. and Technology, Vol. 9 (1976).Google Scholar
  17. 17.
    E. Greenspan, D. Gilai, E. M. Oblow, “Second Order Generalized Perturbation Theory for Source-Driven Systems, Nucl. Sci. Eng., 68, 1–8 (1978).Google Scholar
  18. 18.
    M. Komata, “A Generalized Perturbation Theory Applicable to Reactor Boundary Changes,” Nucl. Sci. Eng., 64, 811–822, (1971).Google Scholar
  19. 19.
    E. M. Oblow, “Sensitivity Theory from a Differential Viewpoint,” Nucl. Sci. Eng., 59, 187–189 (1976).Google Scholar
  20. 20.
    E. M. Oblow, “Sensitivity Theory for Reactor Thermal-Hydraulics Problems,” Nucl. Sci. Eng., 68, 322–337 (1978).Google Scholar
  21. 21.
    M. L. Williams, “Development of Depletion Perturbation Theory for Coupled Neutron/Nuclide Fields,” Nucl. Sci. Eng., 70, 20–36 (1979).Google Scholar
  22. 22.
    M. Becker, “The Principles and Applications of Variational Methods,” Cambridge Press, 1974.Google Scholar
  23. 23.
    D. R. Harris, M. Becker, “Nonlinear Perturbation Technique for the Nuclear Fuel Cycle, Trans. Am. Nucl. Soc., 23, 534–535 (1976).Google Scholar
  24. 24.
    D. G. Cacuci, C. F. Weber, E. M. Oblow and J. H. Marable, “Sensitivity Theory for General Systems of Nonlinear Equations,” Nucl. Sci. Eng., 75, 88–110 (1980).Google Scholar
  25. 25.
    E. Greenspan, “Variational Versus Generalized Perturbation Theories–Are They Different?” Nucl. Sci. Eng., 57, 250–251 (1975).Google Scholar
  26. 26.
    A. Gandini, “Time-Dependent Generalized Perturbation Methods for Burnup Analysis,” Comitato Nazionale Energia Nucleare Technical Report RT/FI (75)4, Rome (1975).Google Scholar
  27. 27.
    J. M. Kallfeltz, G. B. Bruna, G. Palmiotti, and M. Salvatores, Burn-up Calculations with Time-Dependent Generalized Perturbation Theory, Nucl. Sci. Eng., 62, 304–309 (1977).Google Scholar
  28. 28.
    A. Gandini, “Reactor Life and Control Analysis Via GPT Sensitivity Methods,” Trans. Am. Nucl. Soc., 45, 325–326 (1983).Google Scholar
  29. 29.
    I. Del Bono, V. Leproni, and M. Salvatores, “The CLAP-ID Code, Comitato Nazionale Energia Nucleare Technical Report RT/FI (68)9, Roma (1968).Google Scholar
  30. 30.
    W. M. Stacey, Jr., “VARI-ID, A Fortran IV Code for Variational Estimates of Reactivity Worths and Reaction Rate Ratios in One-Dimensional Geometry,” Argonne National Laboratory Report FRA-TM-25, Argonne (1972).Google Scholar
  31. 31.
    L. A. Belblidia, A. Gandini, J. M. Kallfeltz, and V. A. Perone, “Taylor Series Expansion with Generalized Perturbation Theory for Peak Power Investigations,” Am. Nucl. Soc. Trans., 39, 957 (1981).Google Scholar
  32. 32.
    G. P. Cecchini and M. Salvatores, “Advances in the Generalized Perturbation Theory”, Nucl. Sci. Eng., 46, 304–309 (1971).Google Scholar
  33. 33.
    A. Gandini, “A Perturbation Method for Analysis of Neutron-Source-Worth Experiments in Nuclear Reactors,” Nucl. Sci. Eng., 30, 448–463 (1967).Google Scholar
  34. 34.
    A. Gandini, “Comments on Variational Theory and Generalized Perturbation Methods,” Nucl. Sci. Eng., 57, 248–249 (1975).Google Scholar
  35. 35.
    A. Gandini, “Nuclear Data and Integral Measurements Correlation for Fast Reactors. Part I and II,” Comitato Nazionale Energia Nucleare Technical Reports RT/FI(73)5 and RT/FI(73)22, Rome (1973), See also: A. Gandini and M. Salvatores, Nuclear Data and Integral Measurement Correlation for Fast Reactors. The Consistent Method, Comitato Nazionale Energia Nucleare Technical Report RT/FI(74)3, Rome (1973).Google Scholar
  36. 36.
    J. H. Marable, C. R. Weisbin, and G. De Saussure, Combination of Differential and Integral Data, “Advances in Nuclear Science and Technology,” Vol. 14, Plenum, New York (1982).Google Scholar
  37. 37.
    S. Kaplan, “Modal Analysis of Xenon Stability,” Naval Reactors Physics Handbook, Vol. 1, TID-7030, p. 977–985 (1964).Google Scholar
  38. 38.
    W. S. Stacey, Jr., “Control of Xenon Spacial Oscillations,” Nucl. Sci. Eng., 238–243 (1969).Google Scholar
  39. 39.
    R. O. Ferguson and L. F. Sargent, “Linear Programming: Fundamentals and Applications,” McGraw-Hill, New York (1958).MATHGoogle Scholar
  40. 40.
    F. A. Lootsma, “A Survey of Methods for Solving Constrained Minimization Via Unconstrained Minimization,” Numerical Methods for Nonlinear Optimization, Academic Press (1972).Google Scholar
  41. 41.
    A. Gandini, M. Salvatores, and G. Sena, “Use of Generalized Perturbation Methods for Optimization of Reactor Design, J. of Nuclear Energy, 23, 469–475 (1969).ADSCrossRefGoogle Scholar
  42. 42.
    A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors, The University of Chicago Press (1958).Google Scholar
  43. 43.
    R. Saito and S. Katsuraghi, “High Order Perturbation Method in Reactor Calculations,” J. of Nucl. Sci. Technol., 6, 303–307 (1969).MATHCrossRefGoogle Scholar
  44. 44.
    H. Mitani, “Higher Order Perturbation Method in Reactor Calculation, Nucl Sci. Eng., 51, 180–188 (1973).Google Scholar
  45. 45.
    A. Gandini, “Implicit and Explicit higher Order Perturbation Methods for Nuclear Reactor Analysis,” Nucl. Sci. Eng., 67, 347–355 (1978). See also, Nucl. Sci. Eng., 79, 426–430 (1981).Google Scholar
  46. 46.
    P. Palmiotti, Use of Explicit High-Order Perturbation Formulation, Nucl. Sci. Eng., 83, 281–315 (1983).Google Scholar
  47. 47.
    D. Gilai, Eigenfunction Expansion of Perturbed Power Profiles in Multigroup Reactor Models, Trans. Am. Nucl. Soc., 45, 722–724 (1983).Google Scholar
  48. 48.
    A. Henry, “Nuclear Reactor Analysis,” The MIT Press, Cambridge, Massachusetts (1975).Google Scholar
  49. 49.
    J. Devooght, “Spectrum of the Multigroup–Multipoint Diffusion Operator with Delayed Neutrons,” Nucl. Sci. Eng., 67, 147–161 (1978).Google Scholar
  50. 50.
    B. Filippone and R. Conversano, “Ordinary and Generalized Eigenvectors of Low Order SN Diamond–Difference Transport Operators,” Nucl. Sci. Eng., 83, 75–89 (1983).Google Scholar
  51. 51.
    J. M. Gomit, J. Planchard, and A. Sargent, Utilisation des Harmoniques en Physics des Reacteurs: Method Standard et Method des Pseudo-Harmoniques, Electricite de France Technical Report HT/11/54/82 - HI 4345–07, Paris (1982).Google Scholar
  52. 52.
    G. B. Bruna, A. Gandini, and J. M. Gomit, “Sensitivity Analysis by GPT Methods of Fast Breeder Cycle Cost,” Am. Nucl. Soc. Trans., 43, 725 (1982).Google Scholar
  53. 53.
    G. E. Ladas and V. Lakshmikantham, “Differential Equations in Abstract Spaces,” Academic Press, New York and London (1872).Google Scholar
  54. 54.
    L. A. Linsternik and V. J. Sobelev, “Elements of Functional Analysis”, Frederik Ungar Publishing Co., New York (1961).Google Scholar
  55. 55.
    Airton Prati and M. Becker, Applicability of Conventional Diffusion Codes to Nodal Analysis, Trans. Am. Nucl. Soc., 43, 711–712 (1982).Google Scholar
  56. 56.
    M. R. Wagner and K. Koeble, “Progress in Nodal Reactor Analysis,” Proceedings of the Topical Meeting on Advances in Reactor Computations, Vol. II, p. 941, ANS, Salt Lake City, March 1983.Google Scholar
  57. 57.
    R. D. Lawrence, “Perturbation Theory Within the Framework of a High-Order Nodal Method,” Trans. Am. Nucl. Soc., 46, (1984).Google Scholar
  58. 58.
    J. Lewins and A.-L. Babb, “Optimum Nuclear Reactor Control Theory,” Advances in Nuclear Science and Technology,“ Vol. 4, Academic Press (1968).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Augusto Gandini
    • 1
  1. 1.Dipartimento Reattori VelociComitato Nazionale per la Ricerca e per lo Sviluppo dell’Energia Nucleare e delle Energie Alternative Centro Ricerche Energetiche, CasacciaRomeItaly

Personalised recommendations