Dose—Response Relationships

  • Rolf Hartung
Part of the Life Science Monographs book series (LSMO)


One of the most powerful tools in the analysis of toxicological events is the description of the intensity of the exposure in terms of dose, dose rate, or concentration for a specified duration of exposure in relation to the frequency or intensity of the observed responses. Dose-response relationships have received a generic treatment in all general textbooks of toxicology, such as those by Loomis (1974), Doull et al. (1980), and Hapke (1975). The statistical risk of experiencing an effect from an exposure to a chemical can be attributed to the interaction of several important factors. As noted in Chapter 1, this complex relationship of dose to response was already recognized as early as the 16th century by Paracelsus. To restate his observations as they apply in contemporary toxicology—a sufficiently high dose of any compound will produce severe adverse effects in all exposed organisms. Conversely, a sufficiently low dose of any compound will produce no significant effects that can be experimentally determined, no matter how sophisticated or extensive the experiment.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage, P., and R. Doll. 1961.Stochastic models for carcinogenesis. Pp. 19–38 inProceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability.University of California Press, Berkeley.Google Scholar
  2. Berkson, J. 1944. Application of the logistic function to bioassay.Am. Stat. Assoc. J. 39:357–365.Google Scholar
  3. Bliss, C. L. 1935. The calculation of the dose-mortality curve.Ann. Appl. Biol. 22:134–167.CrossRefGoogle Scholar
  4. Brownlee, K. A., J. L. Hodges, Jr., and M. Rosenblatt. 1953. The up-and-down method for small samples.Am. Stat. Assoc. J. 48:262–277.CrossRefGoogle Scholar
  5. Daum, R. J. 1969. A Revision of Two Computer Programs for Probit Analysis. U. S. Department of Agriculture, Pest Control Division, Hyattsville, Maryland.Google Scholar
  6. Doull, J., C. D. Klaassen, and M. O. Amdur, eds. 1980.Casarett and Doull’s Toxicology,2nd ed. Macmillan, New York. 778 pp.Google Scholar
  7. Finney, D. J. 1971.Probit Analysis,3rd ed. Cambridge University Press,Cambridge. 333 pp.Google Scholar
  8. Gaddum, J. H. 1953. Bioassays and mathematics.Pharmacol. Rev. 5:87–134.Google Scholar
  9. Hager, W. G., and T. R. Punnett. 1973. Probit transformation: Improved method for defining syn-chrony of cell cultures.Science182:1028–1030.CrossRefGoogle Scholar
  10. Hapke, H. J. 1975.Toxicologie für Veterinärmediziner. F. Enke Verlag, Stuttgart. 408 pp.Google Scholar
  11. Hartley, H. O., and R. L. Sielken, Jr. 1977. Estimation of “safe doses” in carcinogenic experiments.Biometrics33:1–30.CrossRefGoogle Scholar
  12. Hartung, R. 1981. The use of animal toxicity data. Pp. 4–77 to 4–94 inConference Proceedings: Envi ronmental Risk Assessment. Electric Power Research Institute, Palo Alto, California.Google Scholar
  13. Hoel, D. G., D. W. Gaylor, R. L. Kirchstein, U. Saffiotti, and M. A. Schneiderman. 1975. Estimation of risk of irreversible, delayed toxicity.J. Toxicol. Environ. Health1:133–151.CrossRefGoogle Scholar
  14. Kalow, W. 1965. Dose-response relationships and genetic variation.Ann. N. Y. Acad. Sci. 123:212– 218.CrossRefGoogle Scholar
  15. Klaassen, C. D., and J. Doull. 1980. Evaluation of safety: Toxicologic evaluation. Pp. 11–27 in J.Google Scholar
  16. Doull, C. D. Klaassen, and M. O. Amdur, eds.Casarett and Doull’s Toxicology,2nd ed. Mac-millan, New York.Google Scholar
  17. Levine, R. R. 1973.Pharmacology. Little, Brown &Co., Boston. 412 pp.Google Scholar
  18. Lichtfield, J. T. 1949. A method for rapid graphic solution of time-per cent effect curves.J. Pharmacol. Exp. Ther. 97:399–408.Google Scholar
  19. Lichtfield, J. T., and F. Wilcoxon.1949. A simplified method of evaluating dose-effect experiments.J. Pharmacol. Exp. Ther. 96:99–113.Google Scholar
  20. Loomis, T. A. 1974.Essentials of Toxicology,2nd ed. Lea &Febiger, Philadelphia. 223 pp.Google Scholar
  21. Mantel, N., and W. R. Bryan. 1961. “Safety” testing of carcinogenic agents.J. Natl. Cancer Inst. 27:455–470.Google Scholar
  22. National Research Council. 1977.Drinking Water and Health. A report of the Safe Drinking Water Committee. National Academy of Sciences, Washington, D.C. 939 pp. Society of Toxicology, ED01 Task Force. 1981. Re-examination of the ED01 study.Fund. Appl. Toxicol.1:26-128.Google Scholar
  23. Spratt, J. L. 1966. Computer program for probit analyses.Toxicol. Appl. Pharmacol. 8:110–112.CrossRefGoogle Scholar
  24. Staffa, J. A., and M. A. Mehlman. 1980. Innovations in cancer risk assessment (ED01 Study).J. Envi ron. Pathol. Toxicol. 3:1–246.Google Scholar
  25. Weil, C. S. 1952. Tables for convenient calculation of median effective dose (LD50 or ED50) and instruction in their use.Biometrics8:249–263.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Rolf Hartung
    • 1
  1. 1.Toxicology Program, Department of Environmental and Industrial HealthUniversity of MichiganAnn ArborUSA

Personalised recommendations