Advertisement

Evaluation of Xenobiotic Metabolism

  • James R. Gillette
  • Ronald W. Estabrook
Part of the Life Science Monographs book series (LSMO)

Abstract

In the broadest sense of the word, a toxicant is any substance that causes changes in the function, structure, or replication of cells or the maintenance of homeostasis in a tissue of any living organism. Ordinarily, a toxicant is considered to be a substance in the environment that gains entrance into the body by inhalation, ingestion, injection, or absorption. But a toxicant may also be formed within the organism. Indeed, it may be a neurotransmitter, a hormone, or a metabolic acid that at low concentrations plays a vitally important role in maintaining the wellbeing of the organism, but at higher concentrations triggers an abnormal response.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, M. R., and L. T. Buka. 1978. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol. J. Pharmacol. Exp. Ther. 207:687–697.Google Scholar
  2. Coon, M. J., A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds. 1980. Microsomes, Drug Oxidations, and Chemical Carcinogenesis ,Volumes I and II. Academic Press, New York. 1258 pp.Google Scholar
  3. De Matteis, F., and L. Cantoni. 1970. Alteration of the porphyrin nucleus of cytochrome P-450 caused in the liver by treatment with allyl-containing drugs. Is the modified porphyrin N-substituted? Biochem. J. 183:99–103.CrossRefGoogle Scholar
  4. Doull, J., C. D. Klaassen, and M. O. Amdur, eds. 1980. Toxicology, The Basic Science of Poisons ,2nd ed. Macmillan, New York.Google Scholar
  5. Ehrenberg, L., S. Osterman-Golkar, D. Segerback, K. Svensson, and C. J. Calleman. 1977. Evaluation of genetic risks of alkylating agents. III. Alkylation of haemoglobin after metabolic conversion of ethylene oxide in vivo. Mutat. Res. 45:175–184.CrossRefGoogle Scholar
  6. Gibaldi, M., and D. Perrier. 1975. Pharmacokinetics. Marcel Dekker, New York. 329 pp.Google Scholar
  7. Gillette, J. R. 1974a. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. I. Correlation of changes in the covalent binding of reactive metabolite with changes in the incidence of severity of toxicity. Biochem. Pharmacol. 23:2785–2794.CrossRefGoogle Scholar
  8. Gillette, J. R. 1974b. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. II. Alterations in the kinetics of covalent binding. Biochem. Pharmacol. 23:2927–2938.CrossRefGoogle Scholar
  9. Gillette, J. R. 1980. Pharmacokinetic factors governing the steady-state concentrations of foreign chemicals and their metabolites. Pp. 191–217 in Environmental Chemicals, Enzyme Function and Human Disease. Ciba Foundation Symposium 76, Excerpta Medica, Elsevier/North-Holland, Amsterdam.CrossRefGoogle Scholar
  10. Gillette, J. R., S. D. Nelson, G. J. Mulder, D. J. Jollow, J. R. Mitchell, L. R. Pohl, and J. A. Hinson. 1982. Formation of chemically reactive metabolites of phenacetin and acetominophen. Pp. 931–950 in R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, C. G. Gibson, and C. M. Witmer, eds. Biologically Reactive Intermediates. II. Chemical Mechanisms and Biological Effects ,Part A. Plenum Press, New York.Google Scholar
  11. Golkar, S. O. 1983. Tissue doses in man; implications in risk assessment. Dev. Toxicol. Environ. Sci. 11:289–298.Google Scholar
  12. Gustafsson, J. A., J. Carlstedt-Duke, A. Mode, and J. Rafter, eds. 1980. Biochemistry, Biophysics and Regulation of Cytochrome P-450. Elsevier/North-Holland, Amsterdam.Google Scholar
  13. Kappus, H., and H. Sies. 1981. Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation. Experientia 37:1233–1241.CrossRefGoogle Scholar
  14. Kato, R., and R. Sato, eds. 1982. Microsomes, Drug Oxidations and Drug Toxicity. Japan Scientific Societies Press, Tokyo.Google Scholar
  15. Lau, S. S., T. J. Monks, K. E. Greene, and J. R. Gillete. 1984. Detection and half-life of bromobenzene-3,4-oxide in blood. Xenobiotica 14:539–543.CrossRefGoogle Scholar
  16. Mantel, N., and W. R. Bryan, 1961. “Safety” testing of carcinogenic agents. J. Natl. Cancer Inst. 27:455–470.Google Scholar
  17. Ortiz de Montellano, P. R., B. A. Mico, and G. S. Yost. 1978. Suicidal activation of cytochrome P-450. Formation of a heme-substrate covalent adduct. Biochem. Biophys. Res. Commun. 83:1.Google Scholar
  18. Singer, T., and R. Orndarza, eds. 1980. The Biochemical Basis of Drug Action. Elsevier/North-Holland, New York.Google Scholar
  19. Snyder, R., D. V. Parke, J. J. Kocsis, D. J. Jollow, C. G. Gibson, and C. M. Witmer, eds. 1982. Bio logically Reactive Intermediates. II. Chemical Mechanisms and Biological Effects. Plenum Press, New York.Google Scholar
  20. White, R. E., and M. J. Coon, 1980. Oxygen activation by cytochrome P-450. Annu. Rev. Biochem. 49:315–356.CrossRefGoogle Scholar
  21. Whittemore, A. S. 1978. Qualitative theories of oncogenesis. Adv. Cancer Res. 27:55–88.CrossRefGoogle Scholar
  22. Ziegler, D. M. 1978. Microsomal oxidases. Pp. 193–204 in S. Fleischer, Y. Hatafi, D. H. MacLennan, and A. Tzagoloff, eds. The Molecular Biology of Membranes. Plenum Press, New York.Google Scholar
  23. Ziegler, D. M. 1980. Microsomal flavin-containing monooxygenase: Oxygenation of nucleophilic nitrogen and sulfur compounds. Pp. 201–227 in W. B. Jakoby, ed. Enzymatic Basis of Detoxication ,Volume 1. Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James R. Gillette
    • 1
  • Ronald W. Estabrook
    • 2
  1. 1.Laboratory of Chemical PharmacologyNational Heart, Lung, and Blood InstituteBethesdaUSA
  2. 2.Department of Biochemistry, Southwestern Medical SchoolUniversity of Texas Health Science CenterDallasUSA

Personalised recommendations