Advertisement

Application of in Vivo Data on Chemical—Biological Interactions

  • Larry S. Andrews
  • Stephen L. Longacre
  • Robert Snyder
Part of the Life Science Monographs book series (LSMO)

Abstract

Chemical-biological (CB) interactions are governed by both the structure of the chemical and the properties of the biological system. The ability of a drug or chemical to be absorbed from the lung, skin, or gastrointestinal tract and to enter the body is a CB interaction. Unless the chemical structure is fat-soluble enough to dissolve in the lipoprotein membrane, or small enough to pass through pores, or it mimics an endogenous substance that is actively transported, the chemical cannot move across membranes or skin. Ultimately, for a chemical to exert an effect it must be absorbed and enter the blood. Once in the blood, a chemical’s further disposition is governed by its pharmacokinetic characteristics, i.e., its distribution and elimination from body compartments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvares, A. P. 1978. Interactions between environmental chemicals and drug biotransformation in man. Clin. Pharmacokin. 3:462–477.CrossRefGoogle Scholar
  2. Andrews, L. S., E. W. Lee, C. M. Witmer, J. J. Kocsis, and R. Snyder. 1977. Effects of toluene on the metabolism, disposition and hematopoietic toxicity of 3H-benzene. Biochem. Pharmacol. 26:293– 300.CrossRefGoogle Scholar
  3. Andrews, L. S., J. A. Hinson, and J. R. Gillette. 1978. Studies on the mutagenicity of 7V-hydroxy-2-acetylaminofluorene in the Ames Salmonella mutagenesis test system. Biochem. Pharmacol. 27:2399–2408.CrossRefGoogle Scholar
  4. Barry, E. J., D. Malejka-Giganti, and H. R. Gutmann. 1969. Interaction of aromatic amines with rat liver proteins in vivo. III. On the mechanism of binding of the carcinogens, N-2-fluorenylacetam-ide and N-hydroxy-2-fluorenylacetamide, to the soluble proteins. Chem. Biol. Interact. 1:139–155.CrossRefGoogle Scholar
  5. Beland, F. A., K. L. Dooley, and C. D. Jackson. 1982. Persistence of DNA adducts in rat liver and kidney after multiple doses of the carcinogen N-hydroxy-2-acetylaminofluorene. Cancer Res. 42:1348–1354.Google Scholar
  6. Blackburn, G. R., J. P. Andrews, R. P. Custer, and S. Soraf. 1981. Early events during liver carcinogenesis involving two carcinogenrprotein complexes. Cancer Res. 41:4039–4049.Google Scholar
  7. Bolt, H. M., R. J. Laib, and J. G. Filser. 1982. Reactive metabolites and carcinogenicity of halogenated ethylenes. Biochem. Pharmacol. 31:1–4.CrossRefGoogle Scholar
  8. Boyland, E. 1950. The biological significance of metabolism of polycyclic compounds. Biochem. Soc. Symp. 5:40–54.Google Scholar
  9. Conney, A. H. 1967. Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 9:317–366.Google Scholar
  10. D’Souza, M., R. Snyder, and J. J. Kocsis. 1979. Benzene inhibits ovarian hypertrophy in the hemi-spayed rat. Toxicol. Appl. Pharmacol. 40:A40.Google Scholar
  11. Dutton, G. J., ed. 1966. Glucuronic Acid, Free and Combined: Chemistry, Biochemistry, Pharamacol ogy and Medicine. Academic Press, New York.Google Scholar
  12. Estabrook, R. W., J. Werringloer, J. Capdevila, and R. A. Prough. 1978. The role of cytochrome P450 and the microsomal electron transport system: The oxidative metabolism of benzo(a)pyrene. Pp. 285–316 in H. A. Gelboin and P. O. P. Ts’o, eds. Polycyclic Hydrocarbons and Cancer ,Volume 1. Environment, Chemistry, and Metabolism. Academic Press, New York.Google Scholar
  13. Farber, E. 1978. Experimental liver carcinogens: A perspective. Pp. 357–375 in H. Remmer, P. Bannasch, H. M. Bolt, and H. Popper ,eds. Primary Liver Tumors. MTP Press, New York.Google Scholar
  14. Frommer, U., V. Ullrich, and S. Orrenius. 1974. Influence of inducers and inhibitors on the hydroxylation pattern of n-hexane in rat liver microsomes. FEBS Lett. 41:14–16.CrossRefGoogle Scholar
  15. Gillette, J. R. 1974a. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. I. Correlation of changes in covalent binding of reactive metabolites with changes in the incidence and severity of toxicity. Biochem. Pharmacol. 23:2785–2794.CrossRefGoogle Scholar
  16. Gillette, J. R. 1974b. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. II. Alterations in the kinetics of covalent binding. Biochem. Pharmacol. 23:2927–2938.CrossRefGoogle Scholar
  17. Gonasun, L. M., C. Witmer, J. J. Kocsis, and R. Snyder. 1973. Benzene metabolism in mouse liver microsomes. Toxicol. Appl. Pharmacol. 26:398–406.CrossRefGoogle Scholar
  18. Guengerich, F. P. 1977. Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest. J. Biol. Chem. 252:3970–3979.Google Scholar
  19. Holder, G., H. Yagi, P. Dansette, D. M. Jerina, W. Levein, A. Y. H. Lu, and A. H. Conney. 1974. Effects of inducers of epoxide hydrase on the metabolism of benzo(a)pyrene by liver microsomes and a reconstituted system: Analysis by high pressure liquid chromatography. Proc. Natl. Acad. Sci. USA 71:4356–4360.CrossRefGoogle Scholar
  20. Ingleman-Sundberg, M. 1980. Bioactivation or inactivation of toxic compounds? Trends Pharmacol. Sci. 1980:176–179.Google Scholar
  21. Johnson, E. F. 1979. Multiple forms of cytochrome P-450: Criteria and significance. Pp. 1–26 in E. Hodgson, J. R. Bend, and R. M. Philpot, eds. Reviews in Biochemical Toxicology ,Volume 2. Elsevier/North-Holland, New York.Google Scholar
  22. Jollow, D. J., J. R. Mitchell, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. 1973. Acet-aminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187:195–202.Google Scholar
  23. Jollow, D. J., J. J. Kocsis, R. Snyder, and H. Vainio, eds. 1977. Biological Reactive Intermediates: Formation, Toxicity, and Inactivation. Plenum Press, New York. 514 pp.Google Scholar
  24. Jollow, D. J., S. Roberts, V. Price, and C. Smith. 1982. Biochemical basis for dose response relationships in reactive metabolite toxicity. Pp. 99–113 in R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, and C. M. Witmer, eds. Biological Reactive Intermediates II: Chemical Mechanisms and Biological Effects. Plenum Press, New York.Google Scholar
  25. Kostrzewa, R. M., and D. M. Jacobowitz. 1974. Pharmacological actions of 6-hydroxy-dopamine. Pharmacol. Rev. 26:199–288.Google Scholar
  26. Lawley, P. D. 1980. DNA as a target of alkylating carcinogens. Br. Med. Bull. 36:19–24.CrossRefGoogle Scholar
  27. Lesko, S. A., R. J. Lorentzen, and P. O. P. Ts’o. 1978. Benzo(a)pyrene metabolism: One-electron pathways and the role of nuclear enzymes. Pp. 261–269 in H. V. Gelboin and P. O. P. Ts’o, eds. Polycyclic Hydrocarbons and Cancer ,Volume 1. Academic Press, New York.Google Scholar
  28. Lin, J. K., J. A. Miller, and E. C. Miller. 1975. On the structures of hepatic nucleic acid-bound dyes in rats given the carcinogen N-methyl-4-aminoazobenzene. Cancer Res. 35:844–850.Google Scholar
  29. Longacre, S. L., J. J. Kocsis, and R. Snyder. 1981. Influence of strain differences in mice on the metabolism and toxicity of benzene. Toxicol. Appl. Pharmacol. 60:398–409.CrossRefGoogle Scholar
  30. Lutz, W. K., and C. M. Schlatter. 1977. Mechanism of carcinogenic action of benzene. Irreversible binding to rat liver DNA. Chem. Biol. Interact. 18:241–245.CrossRefGoogle Scholar
  31. Magee, P. N. 1980. Metabolism of nitrosamines: An overview. Pp. 1081–1090 in M. J. Coon, A. H. Conney, R. W. Estabrook, H. V. Gelboin, J. R. Gillette, and P. J. O’Brien, eds. Microsomes, Drug Oxidations, and Chemical Carcinogenesis. Academic Press, New York.Google Scholar
  32. Mason, R. P. 1979. Free radical metabolites of foreign compounds and their toxicological significance. Pp. 151–200 in E. Hodgson ,J. R. Bend, and R. M. Philpot, eds. Reviews in Biochemical Toxicology ,Volume 1. Elsevier/North-Holland, New York.Google Scholar
  33. Miller, E. C., and J. A. Miller. 1947. Presence and significance of bound aminoazo dyes in livers of rats fed p-dimethylaminoazobenzene. Cancer Res. 7:468–480.Google Scholar
  34. Miller, E. C, and J. A. Miller. 1982. Reactive metabolites as key intermediates in pharmacologic and toxicologic responses. Examples from chemical carcinogenesis. Pp. 1–21 in R. Snyder, D. V. Parke ,J. J. Kocsis ,D. J. Jollow ,G. G. Gibson ,and C. M. Witmer, eds. Biological Reactive Intermediates II: Chemical Mechanisms and Biological Effects. Plenum Press, New York.Google Scholar
  35. Miller, J. A. 1970. Carcinogenesis by chemicals: An overview-G. H. A. Clowes memorial lecture. Cancer Res. 30:559–576.Google Scholar
  36. Miller, J. A., and E. C. Miller. 1977. The concept of reactive electrophilic metabolites in chemical carcinogenesis: Recent results with aromatic amines, safrole, and aflatoxin B1. Pp. 6–24 in D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vanio, eds. Biological Reactive Intermediates: Formation, Toxicity, and Inactivation. Plenum Press, New York.Google Scholar
  37. Mitchell, J. R., and D. J. Jollow. 1974. Biochemical basis for drug-induced heptatoxicity. Isr. J. Med. Sci. 10:312–318.Google Scholar
  38. Mitchell, J. R., and D. J. Jollow. 1975. Role of metabolic activation in chemical carcinogenesis in drug-induced hepatic injury. Pp. 395–416 in W. Gerok and K. Sickinger, eds. Drugs and the Liver. Schattaner, Stuttgart.Google Scholar
  39. Mitchell, J. R., W. D. Reid, B. Christine, J. Moskowitz, G. Krishna, and B. B. Brodie. 1971. Bromo-benzene-induced hepatic necrosis: Species differences and protection by SKF 525-A. Res. Com-mun. Chem. Pathol. Pharmacol. 2:877–888.Google Scholar
  40. Mitchell, J. R., D. J. Jollow, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. 1973. Acet-aminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 187:185–194.Google Scholar
  41. Nebert, D. W., and N. M. Jensen. 1979. The Ah locus: Genetic regulation of the metabolism of carcinogens, drugs, and other environmental chemicals by cytochrome P-450-mediated monooxy-genases. CRC Crit. Rev. Biochem. 6:401–438.CrossRefGoogle Scholar
  42. Norpoth, J., U. Witting, and M. Springorum. 1974. Induction of microsomal enzymes in the rat liver by inhalation of hydrocarbon solvents. Int. Arch. Arbeitsmed. 33:315–321.CrossRefGoogle Scholar
  43. Parke, D. V. 1968. The Biochemistry of Foreign Compounds. Pergamon Press, New York.Google Scholar
  44. Poirier, L. A., J. A. Miller, E. C. Miller, and K. Sato. 1967. N-Benzoyloxy-N-methyl-4-aminoazoben-zene: Its carcinogenic activity in the rat and its reactions with proteins and nucleic acids and their constituents in vitro. Cancer Res. 27:1600–1613.Google Scholar
  45. Poirier, M. C., B. True, and B. A. Laishes. 1982. Formation and removal of (guan-8-yl) DNA-2-ace-tylaminofluorene adducts in liver and kidney of male rats given dietary 2-acetylaminofluorene. Cancer Res. 42:1317–1321.Google Scholar
  46. Potter, W. Z., S. S. Thorgeirsson, D. J. Jollow, and J. R. Mitchell. 1974. Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology 12:129–143.CrossRefGoogle Scholar
  47. Pound, A. W., and L. J. McGuire. 1978a. Repeated partial hepatectomy as a promoting stimulus for carcinogenic response of liver to nitrosamines in rats. Br. J. Cancer 37:585–594.CrossRefGoogle Scholar
  48. Pound, A. W., and L. J. McGuire. 1978b. Influence of repeated liver regeneration on hepatic carcinogenesis by diethylnitrosamine in mice. Br. J. Cancer 37:595–602.CrossRefGoogle Scholar
  49. Prescott, L. F., N. Wright, P. Roscoe, and S. S. Bronn. 1971. Plasma-paracentamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet i:519–522.CrossRefGoogle Scholar
  50. Proudfoot, A. T., and N. Wright. 1970. Acute paracetamol poisoning. Br. Med. J. 3:557–558.CrossRefGoogle Scholar
  51. Recknagel, R. O. 1967. Carbon tetrachloride hepatotoxicity. Pharmacol. Rev. 19:145–208.Google Scholar
  52. Roberts, S. A., and D. J. Jollow. 1978. Acetaminophen structure-toxicity relationships-Why is 3-hydroxyacetanilide not hepatotoxic? Pharmacology 20:259.Google Scholar
  53. Roberts, S. A., and D. J. Jollow. 1979a. Acetaminophen structure-toxicity studies: Lack of liver necrosis after 2-hydroxyacetanilide. Pharmacology 21:220.Google Scholar
  54. Roberts ,S. A., and D. J. Jollow. 1979b. Acetaminophen structure-toxicity studies-In vivo covalent binding of a non-hepatotoxic analog 3-hydroxyacetanilide. Fed. Proc. 38:426.Google Scholar
  55. Roberts, S. A., and D. J. Jollow. 1980. Acetaminophen structure-toxicity studies: In vivo covalent binding of a non-hepatotoxic analog, 2-hydroxyacetanilide. Fed. Proc. 39:748.Google Scholar
  56. Sammett, D., E. W. Lee, J. J. Kocsis, and R. Snyder. 1979. Partial hepatectomy reduces both the metabolism and toxicity of benzene. J. Toxicol. Environ. Health 5:785–792.CrossRefGoogle Scholar
  57. Sato, A., and T. Nakajima. 1979. Dose-dependent metabolic interaction between benzene and toluene in vivo and in vitro. Toxicol. Appl. Pharmacol. 48:249–256.CrossRefGoogle Scholar
  58. Sato, R., and T. Omura. 1978. Cytochrome P-450. Academic Press, New York. 233 pp.Google Scholar
  59. Schenkman, J. B., and D. Kupfer, eds. 1982. Hepatic Cytochrome P-450 Monooxygenase System. Pergamon Press, New York.Google Scholar
  60. Sims, P. 1980. The metabolic activation of chemical carcinogens. Br. Med. Bull. 36:11–18.CrossRefGoogle Scholar
  61. Smith, C. L., and D. J. Jollow. 1976. Potentiation of acetaminophen-induced liver necrosis in hamsters by galactosamine. Pharmacology 18:156.Google Scholar
  62. Snyder, R., and J. J. Kocsis. 1975. Current concepts of chronic benzene toxicity. CRC Crit. Rev. Tox icol. 3:265–288.CrossRefGoogle Scholar
  63. Snyder, R., and H. Remmer. 1979. Classes of hepatic microsomal mixed function oxidase inducers. Pharmacol. Ther. 7:213–244.CrossRefGoogle Scholar
  64. Snyder, R. F., F. Uzuki, L. Gonasun, E. Bromfeld, and A. Wells. 1967. The metabolism of benzene in vitro. Toxicol. Appl. Pharmacol. 11:346–360.CrossRefGoogle Scholar
  65. Snyder, R., E. W. Lee, and J. J. Kocsis. 1978a. Binding of labeled benzene metabolites to mouse liver and bone marrow. Res. Commun. Chem. Pathol. Pharmacol. 20:191–194.Google Scholar
  66. Snyder, R., E. W. Lee, and J. J. Kocsis. 1978b. Minireview: Bone marrow depressant and leukemogenic actions of benzene. Life Sci. 21:1709–1722.CrossRefGoogle Scholar
  67. Snyder, R., S. L. Longacre, C. M. Witmer, J. J. Kocsis, L. S. Andrews, and E. W. Lee. 1980. Biochemical toxicology of benzene. Pp. 123–153 in E. Hodgson, J. R. Bend, and R. M. Philpot, eds. Reviews in Biochemical Toxicology ,Volume 3. Elsevier/North-Holland, New York.Google Scholar
  68. Snyder, R., D. V. Parke, J. J. Kocsis, D. J. Jollow, G. G. Gibson, and C. W. Witmer, eds. 1982. Bio logical Reactive Intermediates. II. Clinical Mechanisms and Biological Effects. Plenum Press, New York. 1476 pp.Google Scholar
  69. Thorgeirsson, S. S., H. A. Sasame, J. R. Mitchell, D. J. Jollow, and W. Z. Potter. 1976. Biochemical changes after hepatic injury from toxic doses of acetaminophen or furosemide. Pharmacology 14:205–217.CrossRefGoogle Scholar
  70. Williams, R. T. 1959. Detoxification Mechanisms: The Mechanism and Detoxication of Drugs, Toxic Substances and Other Organic Compounds. Wiley, New York.Google Scholar
  71. Williams, R. T., and D. V. Parke. 1964. The metabolic fate of drugs. Annu. Rev. Pharmacol. 4:85–114.CrossRefGoogle Scholar
  72. Yang, S. K., J. Duetsch, and H. V. Gelboin. 1978. Benzo(a)pyrene metabolism, activation and detoxification. Pp. 205–231 in H. V. Gelboin and P. O. P. Ts’o, eds. Polycyclic Hydrocarbons and Cancer. Volume 1. Environment, Chemistry and Metabolism. Academic Press, New York.Google Scholar
  73. Zampaglione, N., D. J. Jollow, J. R. Mitchell, B. Stripp, M. Hamrick, and J. R. Gillette. 1973. Role of detoxifying enzymes in bromobenzene-induced liver necrosis. J. Pharmacol. Exp. Ther. 187:218–227.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Larry S. Andrews
    • 1
  • Stephen L. Longacre
    • 2
  • Robert Snyder
    • 3
  1. 1.ARCO Chemical Co.Newtown SquareUSA
  2. 2.Toxicology DepartmentRohm & Haas Co.Spring HouseUSA
  3. 3.Busch CampusRutgers University College of PharmacyPiscatawayUSA

Personalised recommendations