Approaches to Route Extrapolation

  • James R. Withey
Part of the Life Science Monographs book series (LSMO)


The route of exposure to a toxic agent may affect the site and the magnitude of the toxic response. The greatest potency and most rapid response for any agent will usually be observed when the route of administration is intravenous, followed, in descending order, by the inhalation, intraperitoneal, subcutaneous, intramuscular, intragastric, and topical routes (Klaassen and Doull, 1980). Interactions at or near the site of uptake can also affect both the rate and extent of J uptake and thus modify the intensity of the toxic effect (Martin et al., 1971). This ’ chapter examines the reasons for such route specificity and explores suggested approaches in which data obtained from one route may be extrapolated to another.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Conference of Governmental Industrial Hygienists. 1962. Threshold limit values for 1962. Am. Ind. Hyg. Assoc. J. 23:419–423.CrossRefGoogle Scholar
  2. American Conference of Governmental Industrial Hygienists. 1971. Documentation of the Threshold Limit Values for Substances in Workroom Air ,3rd ed. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio.Google Scholar
  3. American Conference of Governmental Industrial Hygienists. 1977. TLV (Threshold Limit) Values for Chemical Substances and Physical Agents in the Workroom Environment with Intended Changes for 1977. American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio.Google Scholar
  4. Astrand, I. 1975. Uptake of solvents in the blood and tissues of man: A review. Scand. J. Work Envi ron. Health 1:199–218.CrossRefGoogle Scholar
  5. Barr, W. H. 1968. Principles of biopharmaceutics. Am. J. Pharmacol. Ed. 32:958–981.Google Scholar
  6. Barr, W. H. 1969. Factors involved in the assessment of systemic or biologic availability of drug products. Drug Inf. Bull. 3:27–45.Google Scholar
  7. Boyes, R. N., H. J. Adams, and B. R. Duce, 1970. Oral absorption and disposition kinetics of lidocaine hydrochloride in dogs. J. Pharmacol. Exp. Ther. 174:1–8.Google Scholar
  8. Cassidy, M. K., and J. B. Houston. 1980. Protective role of intestinal and pulmonary enzymes against environmental phenols. Br. J. Pharmacol. 69:316.Google Scholar
  9. Cornish, H. H. 1980. Solvents and vapors. Pp. 468–496 in J. Doull, C. D. Klaassen, and M. O. Amdur, eds. Casarett and Doull–s Toxicology ,2nd ed. Macmillan, New York.Google Scholar
  10. Dollery, C. T., D. S. Davies, and M. E. Conolly. 1971. Differences in the metabolism of drugs depending upon their route of administration. Ann. N. Y. Acad. Sci. 179:108–114.CrossRefGoogle Scholar
  11. Engstrom, K., K. Husman, and V. Riihimaki. 1977. Percutaneous absorption of m-xylene in man. Int. Arch. Occup. Environ. Health 39:181–189.CrossRefGoogle Scholar
  12. Fukabori, S., K. Nakaaki, J. Yonemoto, and O. Tada. 1976. On the cutaneous absorption of methyl chloroform. J. Sci. Labour 52:67–80.Google Scholar
  13. Gibaldi, M., and D. Perrier. 1975. Pharmacokinetics. Marcel Dekker, New York.Google Scholar
  14. Gladtke, E., and H. M. von Hattingberg. 1979. Pharmacokinetics: An Introduction. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  15. Goldstein, A., L. Aronow, and S. M. Kalman. 1974. Principles of Drug Action ,2nd ed. Wiley, New York.Google Scholar
  16. Guillemin, M., J. C. Murset, M. Lob, and J. Riquez. 1974. Simple method to determine the efficiency of a cream used for skin protection against solvents. Br. J. Ind. Med. 31:310–316.Google Scholar
  17. Hefner, R. E., P. G. Watanabe, and P. Gehring. 1975. Preliminary studies of the fate of vinylchloride monomer in rats. Ann. N. Y. Acad. Sci. 246:135–138.CrossRefGoogle Scholar
  18. Himmelstein, K. J., and R. J. Lutz. 1979. A review of the applications of physiologically based pharmacokinetic modeling. J. Pharmacokin. Biopharm. 7:127–145.CrossRefGoogle Scholar
  19. Klaassen, C. D. 1980. Absorption, distribution and excretion of toxicants. Pp. 28–55 in J. Doull, C. D. Klaassen, and M. O. Amdur, eds. Casarett and Doull’s Toxicology ,2nd ed. Macmillan, New York.Google Scholar
  20. Klaassen, C. D., and J. Doull. 1980. Evaluation of safety: Toxicologic evaluation. Pp. 11–27 in J. Doull, C. D. Klaassen, and M. O. Amdur, eds. Casarett and Doull’s Toxicology ,2nd ed. Macmillan, New York.Google Scholar
  21. Leschke, E. 1943. Clinical Toxicology. W. Wood, Baltimore, Maryland.Google Scholar
  22. Levy, G., and M. Gibaldi. 1975. Pharmacokinetics. Pp. 1–34 in Handbook of Experimental Pharma cology ,Volume 28, Part 3. Springer-Verlag, New York.Google Scholar
  23. Loo, J. K. C., and S. Riegelman. 1968. New methods for calculating the intrinsic rate of drugs. J. Pharmacol. Sci. 57:918–928.CrossRefGoogle Scholar
  24. Martin, E. W., S. F. Alexander, D. J. Farage, and W. E. Hassan. 1971. Hazards of Medication. Lip-pincott, Philadelphia.Google Scholar
  25. McNamara, P. J., J. T. Slattery, M. Gibaldi, and G. Levy. 1979. Accumulation kinetics of drugs with nonlinear plasma protein and tissue binding characteristics. J. Pharmacokin. Biopharm. 7:397– 405.CrossRefGoogle Scholar
  26. National Research Council. 1980. Principles of Toxicological Interactions Associated with Multiple Chemical Exposures. National Academy Press, Washington, D.C.Google Scholar
  27. Needleman, P., S. Lang, and E. M. Johnson, Jr. 1972. Organic nitrates: Relationship between biotransformation and rational angina pectoris therapy. J. Pharmacol. Exp. Ther. 181:489–497.Google Scholar
  28. Nelson, W. E. 1953. Textbook of Pediatrics ,5th ed. Saunders, Philadelphia.Google Scholar
  29. Perucca, E., G. Gatti, G. M. Frigo, and A. Crema. 1978. Pharmacokinetics of valproic acid after oral and intravenous administration. Br. J. Pharmacol. 5:313–318.CrossRefGoogle Scholar
  30. Rihimaki, V., and P. Pfaffli. 1978. Percutaneous absorption of solvent vapours in man. Scand. J. Work Environ. Health 4:73–85.CrossRefGoogle Scholar
  31. Ritschel, W. A. 1972. Bioavailability in the clinical evaluation of drugs. Drug Intell. Clin. Pharm. 6:246–256.CrossRefGoogle Scholar
  32. Rowland, J., S. Riegelman, P. A. Harris, S. D. Sholkoff, and E. J. Eyring. 1967. Kinetics of acetyl salicyclic acid disposition in man. Nature 215:413–414.CrossRefGoogle Scholar
  33. Schanker, L. S. 1971. Drug absorption. Pp. 22–43 in B. N. La Du, H. G. Mandel, and E. L. Way, eds. Fundamentals of Drug Metabolism and Drug Disposition. Williams &Wilkins, Baltimore, Maryland.Google Scholar
  34. Scheuplein, R. J., and I. H. Blank. 1971. Permeability of the skin. Physiol. Rev. 51:702–747.CrossRefGoogle Scholar
  35. Sherwood, R. J. 1972. Comparative methods of biological monitoring of benzene exposures. Pp. 29–52 in Proceedings of the Third Conference on Environmental Toxicology. AMRL-TR 72–130. Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio.Google Scholar
  36. Shugaev, B. B. 1969. Concentration of hydrocarbons in tissues as a measure of toxicity. Arch. Environ. Health 18:878–882.CrossRefGoogle Scholar
  37. Sollman, T. 1953. A Manual of Pharmacology ,7th ed. Saunders, Philadelphia.Google Scholar
  38. Stokinger, H. E., and R. L. Woodward. 1958. Toxicologic methods for establishing drinking water standards. J. Am. Water Works Assoc. 50:515–529.Google Scholar
  39. Ullrich, V., A. Hildebrandt, I. Roots, R. W. Estabrook, and A. H. Conney, eds. 1977. Microsomes and Drug Oxidants. Pergamon Press, New York. U.S.Google Scholar
  40. Environmental Protection Agency. 1979. EPA Water Quality Criteria: Request for Comments, Part V. March 15. Fed. Reg. 43:15926–15981.Google Scholar
  41. Wagner, J. G. 1971. Biopharmaceutics and Relevant Pharmacokinetics. Drug Intelligence, Hamilton, Illinois.Google Scholar
  42. Wagner, J. G. ,and E. Nelson. 1963. Percent absorbed time plots derived from blood level and/or urinary excretion data. J. Pharm. Sci. 52:610–611.CrossRefGoogle Scholar
  43. Wagner, J. G., J. I. Northam, C. D. Alway, and O. S. Carpenter. 1965. Blood levels of drug at the equilibrium state after multiple dosing. Nature 207:1301–1302.CrossRefGoogle Scholar
  44. Withey, J. R. 1973. Bioavailability and therapeutic efficacy. Rev. Can. Biol. 32:21–30.Google Scholar
  45. Withey, J. R. 1976. Pharmacodynamics and uptake of vinyl chloride monomer administered by various routes to rats. J. Toxicol. Environ. Health 1:381–394.CrossRefGoogle Scholar
  46. Withey, J. R. 1978. Pharmacokinetic principles. Pp. 97–118 in Proceedings of the First International Congress on Toxicology. Academic Press, New York.Google Scholar
  47. Withey, J. R., and B. T. Collins. 1976. A statistical assessment of the quantitative uptake of vinyl chloride monomer from aqueous solution. J. Toxicol. Environ. Health 2:311–321.CrossRefGoogle Scholar
  48. Withey, J. R., and P. G. Collins. 1979. The distribution and pharmacokinetics of styrene monomer in rats by the pulmonary route. J. Environ. Pathol. Toxicol. 2:1329–1342.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James R. Withey
    • 1
  1. 1.Environmental and Occupational Toxicology DivisionEnvironmental Health DirectorateOttawaCanada

Personalised recommendations