Extrapolation from Animal Data

  • Edward J. Calabrese
Part of the Life Science Monographs book series (LSMO)


It is the premise of this chapter that there is a biological basis upon which toxicologists may be able to extrapolate from animals to humans. Its foundation lies in evolutionary theory, with the phylogenetic continuity of animal species.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agar, N. S., M. Gruca, and J. D. Harley. 1974. Studies on glucose-6-phosphate dehydrogenase, glutathione reductase, and regeneration of reduced glutathione in the red blood cells of various mammalian species. Aust. J. Exp. Biol. Med. Sci. 52:607–614.CrossRefGoogle Scholar
  2. Amma, E. L., G. D. Sproul, W. Wong, and T. H. J. Heisman. 1974. Mechanism of sickling in deer erythrocytes. Ann. N. Y. Acad. Sci. 241:605–613.CrossRefGoogle Scholar
  3. Ball, S., C. M. Hawkey, J. M. Hime, I. F. Keymer, and M. R. Brambell. 1976. Red cell sickling in genets. Comp. Biochem. Physiol. A 54:49–54.CrossRefGoogle Scholar
  4. Bannerman ,R. M., J. A. Edwards, and M. Kreimer-Birnbaum. 1974. Investigation of potential models of thalassemia. Ann. N. Y. Acad. Sci. 232:306–322.CrossRefGoogle Scholar
  5. Boxenbaum, H. 1980. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin. J. Pharmacokin. Biopharm. 8:165–176.CrossRefGoogle Scholar
  6. Calabrese, E. J. 1983. Principles of Animal Extrapolation. Wiley, New York.Google Scholar
  7. Castro, O., J. Orlin, M. W. Rosen, and S. C. Finch. 1973. Survival of human sickle-cell erythrocytes in heterologous species: Response variations in oxygen tension. Proc. Natl. Acad. Sci. USA 70:2356–2359.CrossRefGoogle Scholar
  8. Dickes, S. E. 1970. Pp. 16’30 in Mechanisms of Urine Concentration and Dilution in Mammals. Edward Arnold, London.Google Scholar
  9. Feinstein, R. N., J. Braun, and J. B. Howard. 1968. Nature of the heterozygote blood catalase in a hypocatalasemic mouse mutant. Biochem. Genet. 1:277–285.CrossRefGoogle Scholar
  10. Freireich, E. J., E. A. Gehan, D. P. Rall, L. H. Schmidt, and H. E. Skipper. 1966. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey and man. Cancer Chemother. Rep. 50:219–244.Google Scholar
  11. Goldsmith, M. A., M. Slavik, and S. K. Carter. 1975. Quantitative prediction of drug toxicity in humans from toxicology in small and large animals. Cancer Res. 35:1354–1364.Google Scholar
  12. Krasovskii, G. N. 1976. Extrapolation of experimental data from animals to man. Environ. Health Perspect. 13:51–58.CrossRefGoogle Scholar
  13. Maral, J., K. Puget, and A. M. Michelson. 1977. Comparative study of superoxide dismutase, catalase, and glutathione peroxidase levels in erythrocytes of different animals. Biochem. Biophys. Res. Commun. 77:1525–1535.CrossRefGoogle Scholar
  14. Maronpot, R. R. 1972. Erythrocyte glucose-6-phosphate dehydrogenase and glutathione deficiency in sheep. Can. J. Comp. Med. 36:55–60.Google Scholar
  15. Paniker, N. V., and G. Y. Iyer. 1965. Erythrocyte catalase and detoxication of hydrogen peroxide. Can. J. Biochem. 43:1029–1039.CrossRefGoogle Scholar
  16. Pinkel, D. 1958. The use of body surface area as a criterion of drug dosage in cancer chemotherapy. Cancer Res. 18:853–856.Google Scholar
  17. Rees Evans, E. T. 1968. Sickling phenomenon in sheep. Nature 217:74–75.CrossRefGoogle Scholar
  18. Sladic-Simic, D., P. N. Martinovich, N. Zivkovic, M. Kahn, and H. Ranney. 1969. A thalassemia-like disorder in Belgrade laboratory rats. Ann. N. Y. Acad. Sci. 165:93–99.CrossRefGoogle Scholar
  19. Weiss, M, W. Sziegoleit, and W. Förster. 1977. Dependence of pharmacokinetic parameters on the body weight. Int. J. Clin. Pharmacol. Biopharm. 15:572–575.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Edward J. Calabrese
    • 1
  1. 1.Division of Public HealthUniversity of MassachusettsAmherstUSA

Personalised recommendations