Measures of Possibility and Fuzzy Sets

  • Didier Dubois
  • Henri Prade


The material in this book is based on a nontraditional approach to the imprecise and the uncertain. The basic concept is the measure of possibility. The object of this introduction is to provide motivation and context, to define measures of possibility, and to present basic notions necessary for understanding the later chapters. It appeals considerably to results contained in the authors’ theses [3, 24], among other references.


Membership Function Interval Analysis Fuzzy Relation Confidence Measure Fuzzy Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DEMPSTER , A. P.(1967). Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat., 38, 325–339.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    DE LUCA, A., and TERMINI, S. (1972). A definition of a non-probabilistic entropy, in the setting of fuzzy sets theory. Inf. Control, 20, 301–312.MATHCrossRefGoogle Scholar
  3. 3.
    DUBOIS, D. (1983). Modèles Mathématiques de l’Imprécis et de l’Incertain en Vue d’Applications aux Techniques d’Aide à la Décision. Thesis, Scientific and Medical University of Grenoble.Google Scholar
  4. 4.
    DUBOIS, D., and PRADE, H. (1979). Operations in a fuzzy-valued logic. Inf. Control, 43(2), 224–240.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    DUBOIS, D., and PRADE, H. (1980). New results about properties and semantics of fuzzy set-theoretic operators. InFuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (Paul P. Wang and S. K. Chang, eds.). Plenum, New York, pp. 59–75.Google Scholar
  6. 6.
    DUBOIS, D., and PRADE, H. (1980). Fuzzy Sets and Systems: Theory and Applications, Vol. 144 in Mathematics in Sciences and Engineering Series. Academic, New York.Google Scholar
  7. 7.
    DUBOIS, D., and PRADE, H. (1982). Towards fuzzy differential calculus. Part 2: integration on fuzzy intervals. Fuzzy Sets Syst. 8, 105–116.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    DUBOIS, D., and PRADE, H. (1982). On several representations of an uncertain body of evidence. In Fuzzy Information and Decision Processes (M. M. Gupta and E. Sanchez, eds.), North-Holland, Amsterdam, pp. 167–181.Google Scholar
  9. 9.
    DUBOIS, D., and PRADE, H. (1983). Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms. Fuzzy Sets Syst., 10(1), 15–20.MATHCrossRefGoogle Scholar
  10. 10.
    DUBOIS, D., and PRADE, H., (1984). The statistical approach to membership functions: random experiments with imprecise outcomes. In Proceedings of the Workshop on the Membership Function, Brussels, March 22–23, 1984, EIASM, Brussels, pp. 51–61. Extended version DUBOIS, D., and PRADE, H. (1986). Fuzzy sets and statistical data. Eur. J. Oper. Res. 25, 345–356.Google Scholar
  11. 11.
    GOGUEN, J. A. (1967). L-Fuzzy sets. J. Math. Anal. Appl., 18(1), 145–174.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    GOGUEN, J. A. (1974). Concept representation in natural and artificial languages: Axioms, extensions and applications for fuzzy sets. Int. J. Man-Machine Stud., 6, 513–561.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    GOTTWALD, S. (1979). Set theory for fuzzy sets of higher levels. Fuzzy Sets and Syst., 2, 125–151.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    HIGASHI, M., and KLIR, G. J. (1983). Measures of uncertainty and information based on possibility distributions. Int. J. Gen. Syst., 9(1), 43–58.MathSciNetCrossRefGoogle Scholar
  15. 15.
    HUBER, P. J. (1973). The use of Choquet capacities in statistics. Bull. Int. Stat. Inst., XLV(4), 181–188.Google Scholar
  16. 16.
    KAUFMANN, A. (1973). Introduction à la Théorie des Sous-Ensembles Flous. Vol. 1: Eléments Théoriques de Base. Masson, Paris.Google Scholar
  17. 17.
    KLEMENT, E. P. (1980). Characterisation of finite fuzzy measures using Markoff-kernels. J. Math. Anal. Appl., 75, 330–339.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Klement, E. P. (1982). Construction Of Fuzzy σ-Algebras Using Triangular Norms, J. Math. Anal. Appl, 85, 543–566MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    KRANTZ, D. H., LUCE, R., SUPPES, P., and TVERSKI, A. (1971). Foundations of Measurement. Vol. 1, Academic, New York.MATHGoogle Scholar
  20. 20.
    MIZUMOTO, M., and TANAKA, K. (1976). Some properties of fuzzy sets of type 2. Inf. Control, 31, 312–340.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    NGUYEN, H. T. (1979). Some mathematical tools for linguistic probabilities. Fuzzy Sets Syst., 2, 53–65.MATHCrossRefGoogle Scholar
  22. 22.
    NORWICH, A. M., and TURKSEN, I. B. (1982). The fundamental measurement of fuzziness. InFuzzy Set and Possibility Theory: Recent Developments (R. R. Yager, ed.). Pergamon, New York, pp. 49–60.Google Scholar
  23. 23.
    PRADE, H. (1982). Modal semantics and fuzzy set theory. In Fuzzy Set and Possibility Theory: Recent Developments (R. R. Yager, ed.). Pergamon, New York, pp. 232–246.Google Scholar
  24. 24.
    PRADE, H. (1982). Modèles Mathématiques de l’Imprécis et de l’Incertain en Vue d’Applications au Raisonnement Naturel. Thesis No. 1048, Paul Sabatier University, Toulouse.Google Scholar
  25. 25.
    PURI, M. L., and RALESCU, D. (1982). A possibility measure is not a fuzzy measure. Fuzzy Sets Syst., 7, 311–314.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    RALESCU, D. (1979). A survey of the representation of fuzzy concepts and its applications. In Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, and R. R. Yager, eds.). North-Holland, Amsterdam, pp. 77–91.Google Scholar
  27. 27.
    SAVAGE, L. J. (1972). The Foundations of Statistics, Dover, New York.MATHGoogle Scholar
  28. 28.
    SHAFER, G. (1976). A Mathematical Theory of Evidence. Princeton University Press, Princeton, New Jersey.MATHGoogle Scholar
  29. 29.
    SUGENO, M. (1974). Theory of Fuzzy Integrals and Its Applications. Ph.D. thesis, Tokyo Institute of Technology, Japan.Google Scholar
  30. 30.
    YAGER, R. R. (1982). Measuring tranquility and anxiety in decision-making: An application of fuzzy sets. Int. J. Man-Machine Stud., 8, (3), 139–146.MathSciNetMATHGoogle Scholar
  31. 31.
    ZADEH, L. A. (1965). Fuzzy sets. Inf. Control, 8, 338–353.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    ZADEH, L. A. (1968). Probability measures of fuzzy events. J. Math. Anal. Appl., 23, 421–427.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    ZADEH, L. A. (1971). Similarity relations and fuzzy orderings.Inf. Sci., 3, 177–200.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    ZADEH, L. A. (1971). Quantitative fuzzy semantics. Inf. Sci., 3, 159–176.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    ZADEH, L. A. (1975). Calculus of fuzzy restrictions. In Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. A. Zadeh, K. S. Fu, K. Tanaka, and M. Shimura, eds.). Academic, New York, pp. 1–39.Google Scholar
  36. 36.
    ZADEH, L. A. (1975). The concept of a linguistic variable and its applications to approximate reasoning. Inf. Sci. Part 1, 8, 199–249; Part 2, 8, 301–357; Part 3, 9, 43–80.MathSciNetCrossRefGoogle Scholar
  37. 37.
    ZADEH, L. A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst., 1, 3–28.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    ZIMMERMANN, H. J., and ZYSNO, P. (1983). Decisions and evaluations by hierarchical aggregation of information. Fuzzy Sets Syst., 10(3), 243–260.MATHCrossRefGoogle Scholar
  39. 39.
    DUBOIS, D., and PRADE, H. (1986). A set-theoretic view of belief functions: Logical operations and approximations by fuzzy sets. Int. J. Gen. Syst. 12, 193–226.MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.CNRS, Languages and Computer Systems (LSI)University of Toulouse IIIToulouseFrance

Personalised recommendations