Platelet-Activating Factor Binding to Specific Cell Membrane Receptors

  • Frank H. Valone


Platelet-activating factor (PAF) serves as an extracellular, fluid-phase mediator of certain IgE-mediated, immune complex-mediated, and physically induced inflammatory reactions (Benveniste et al., 1972; Camuss et al., 1982; Grandel et al., 1985; Pinckard et al., 1979; Prevost et al., 1984). (For a discussion of PAF’s potential intracellular effects see Chapter 10.) Numerous studies have demonstrated that the effects of extracellular PAF are mediated by interaction of PAF with specific cell membrane receptors. Early studies demonstrated high-affinity PAF binding sites in platelets (Chesney et al., 1983; Hwang et al., 1983; Inarrea et al., 1984; Kloprogge and Akkerman., 1984; Valone et al., 1982) and neutrophils (Hwang et al., 1983; Valone and Goetzl, 1983). That these high-affinity binding sites constituted specific PAF receptors was suggested by several observations: Studies with PAF analogs demonstrated a close correlation between their potency as platelet activators and their capacity to compete with radiolabeled PAF for binding. There is a good correlation between the concentrations of PAF that elicit half-maximal cellular activation and the concentrations that half-maximally saturate PAF binding. In addition, selective platelet desensitization to PAF was associated with the loss of specific PAF binding sites (Valone et al., 1982). Nevertheless, PAF’s phospholipid structure left the existence of specific PAF receptors that mediate cellular activation somewhat in doubt. This uncertainty has largely been resolved by the development of selective PAF antagonists including CV-3988 (Terashita et al., 1983; Valone, 1985), kadsurenone (Shen et al., 1985), and BN52021 (Braquet et al., 1985).


Human Platelet Platelet Membrane Glyceryl Ether Rabbit Platelet Specific Cell Membrane Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akatories, K., and Jakobs, K. H., 1981, Epinephrine inhibits adenylate cyclase and stimulates a GT Pase in human platelet membranes via alpha-adrenoceptors, FEBS Lett. 130:235–238.CrossRefGoogle Scholar
  2. Akatories, K., and Jakobs, K. H., 1984, Ni-mediated inhibition of human platelet adenylate cyclase by thrombin, Eur. J. Biochem. 145:333–338.CrossRefGoogle Scholar
  3. Avdonin, P. V., Svitina-Ulitina, I. V., and Kulikov, V. I., 1985, Stimulation of high-affinity hormone-sensitive GT Pase of human platelets by l-0-alkyl-2–0-acetyl-sn-glyceiyl-3-phosphocholine (platelet activating factor), Biochem. Biophys. Res. Commun. 131:307–313.PubMedCrossRefGoogle Scholar
  4. Benveniste, J., Henson, P. M., and Cochrane, C. G., 1972, Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils and a platelet-activating factor, J. Exp. Med. 136:1356–1377.PubMedCrossRefGoogle Scholar
  5. Billah, M. M., and Lapetina, E. G., 1983, Platelet-activating factor stimulates metabolism of phos-phoinositides in horse platelets: Possible relationship to Ca2+ mobilization during stimulation, Proc. Natl. Acad. Sci. USA 80:965–968.PubMedCrossRefGoogle Scholar
  6. Braquet, P., Spinnewyn, B., Taylor, J. E., and Pierce, K., 1985, Specific inhibition of PAF-acether-induced platelet aggregation by BN52021, a highly specific PAF-acether receptor antagonist isolated from Ginkgo Biloba, Blood Vessels 16:559–562.Google Scholar
  7. Braquet, P., Robin, S. P., Esanu, A., Landais, Y., Vilain, B., Baroggi, N., Touvay, C., and Etienne, A., 1986, Isolation and characterization of endogenous PAF (platelet-activating factor)-inhibiting factors (EPIFs) in human and monkey urines, in: New Horizons in Platelet Activating Factor Research (M. Lee and C. Winslow, eds.), Wiley, New York.Google Scholar
  8. Brass, L. F., and Shattil, S. J., 1984, Identification and function of the high affinity binding sites for Ca2+ on the surface of platelets, J. Clin. Invest. 73:626–632.PubMedCrossRefGoogle Scholar
  9. Brock, T. A., Griendling, K. K., and Gimbrone, M. A., 1986, Mechanisms underlying agonist-induced desensitization of platelet activating factor effects on endothelial calcium homeostasis, in: New Horizons in Platelet Activating Factor Research (M. Lee and C. Winslow, eds.), Wiley, New York.Google Scholar
  10. Camussi, G., Tetta, C., Deregibus, M. C., Bussolino, F., Segoloni, G., and Vercellone, A., 1982, Platelet-activating factor (PAF) in experimentally-induced rabbit acute serum sickness: Role of basophil-derived PAF in immune complex deposition, J. Immunol. 128:86–94.PubMedGoogle Scholar
  11. Cazenave, J. P., Benveniste, J., and Mustard, J. F., 1979, Aggregation of rabbit platelets by platelet-activating factor is independent of the release reaction and the arachidonate pathway and inhibited by membrane-active drugs. Lab. Invest. 41:275–285.PubMedGoogle Scholar
  12. Chesney, C. M., Pifer, D. D., and Huch, K. M., 1983, Alpha-adrenergic antagonists inhibit binding of platelet-activating factor (PAF) to gel-filtered platelets, in: Platelet Activating Factor (J. Benveniste and B. Arnoux, eds.), Elsevier Science Publishers, Amsterdam, pp. 177–186.Google Scholar
  13. Chesney, C. M., Pifer, D. D., and Huch, K. M., 1984, Desensitization of human platelets by platelet-activating factor (PAF), Fed. Proc. 43:977a.Google Scholar
  14. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983a, Metabolic fate of platelet-activating factor in neutrophils, J. Biol. Chem. 258:6357–6361.PubMedGoogle Scholar
  15. Chilton, F. H., OFlaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983b, Selective acylation of lyso platelet activating factor by arachidonate in human neutrophils, J. Biol. Chem. 258:7268–7271.PubMedGoogle Scholar
  16. Clare, K. A., and Scrutton, M. C., 1984, The role of Ca2+ uptake in the response of human platelets to adrenaline and to l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor), Eur. J. Biochem. 140:129–136.PubMedCrossRefGoogle Scholar
  17. Lillo, A. H. K., Winslow, C. M., DAries, F. J., Frisch, G. E., and Saunders, R. N., 1986, The role of calcium in the binding of platelet activating factor (PAF) to human platelets, in: New Horizons in Platelet Activating Factor Research (M. Lee and C. Winslow, eds.), Wiley, New York.Google Scholar
  18. Doebber, T. W., Wu, M. S., Robbins, J. C., Ma-Choy, B., Chang, M. N., and Shen, T. Y., 1985, Platelet activating factor (PAF) involvement in endotoxin-induced hypotension in rats. Studies with the PAF-receptor antagonist kadsurenone, Biochem. Biophys. Res. Commun. 127:799–804.PubMedCrossRefGoogle Scholar
  19. Doyle, V. M., and Ruegg, A. T., 1985, Lack of evidence for voltage dependent calcium channels on platelets. Biochem. Biophys. Res. Commun. 127:161–167.CrossRefGoogle Scholar
  20. Feinstein, M. B., Egan, J. J., Shaafi, R. I., and White, J., 1983, The cytoplasmic concentration of free calcium in platelets is controlled by stimulators of cyclic AMP production (PGD2, PGE1, For-skolin), Biochem. Biophys. Res. Commun. 113:598–604.PubMedCrossRefGoogle Scholar
  21. Glinka, K. G., St. Denney, I. H., and Nemecek, G. M., 1986, Endothelial cell calcium efflux in response to platelet activating factor, in: New Horizons in Platelet Activating Factor Research (M. Lee and C. Winslow, eds.), Wiley, New York.Google Scholar
  22. Goetzl, E. J., Derian, C. K., Tauber, A. I., and Valone, F. H., 1980, Novel effects of l-O-hexadecyl-2-acyl-sn-glycero-3-phosphorylcholine mediators on human leukocyte function: Delineation of the specific roles of the acyl substituents, Biochem. Biophys. Res. Commun. 94:881–888.PubMedCrossRefGoogle Scholar
  23. Grandel, K. E., Farr, R. S., Wanderer, A. A., Eisenstadt, T. C., and Wasserman, S. I., 1985, Association of platelet activating factor with primary acquired cold urticaria, N. Engl. J. Med. 313:405–409.PubMedCrossRefGoogle Scholar
  24. Hallam, T. J., and Rink, T. J., 1985, Agonists stimulate divalent cation channels in the plasma membrane of human platelets, Fed. Eur. Biochem. Soc. 186:175–179.CrossRefGoogle Scholar
  25. Hallam, T. J., Sanchez, A., and Rink, T. J., 1984, Stimulus-response coupling in human platelets: Changes evoked by platelet-activating factor in cytoplasmic free calcium monitored with the fluorescent calcium indicator Quin-2, Biochem. J. 218:819–827.PubMedGoogle Scholar
  26. Henson, P. M., 1976, Activation and desensitization of platelets by platelet-activating factor (PAF) derived from IgE-sensitized basophils. 1. Characteristics of the secretory response, J. Exp. Med. 143:937–952.PubMedCrossRefGoogle Scholar
  27. Hwang, S.-B., Lee, C.-S. C., Cheach, M. J., and Shen, T. Y., 1983, Specific receptor sites for –0-alkyl-2–0-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) on rabbit platelet and guinea pig smooth muscle membranes, Biochemistry 22:4756–4763.PubMedCrossRefGoogle Scholar
  28. Hwang, S.-B., Lam, M.-H., and Pong, S.-S., 1986, Regulation of 3H-PAF binding to its receptors by ions and GTP and PAF-induced activation of GT Pase in rabbit platelet membranes, J. Biol. Chem. 261:532–537.PubMedGoogle Scholar
  29. Ieyasu, H., Takai, Y., Kaibuchi, K., Sawamura, M., and Nishizuka, Y., 1982, A role of calcium-activated, phospholipid-dependent protein kinase in platelet-activating factor-induced serotonin release from rabbit platelets, Biochem. Biophys. Res. Commun. 108:1701–1708.CrossRefGoogle Scholar
  30. Inarrea, P., Gomez-Cambronero, J., Nieto, M., and Sanchez Crespo, M., 1984, Characteristics of the binding of platelet-activating factor to platelets of different animal species, Eur. J. Pharmacol. 105:309–315.PubMedCrossRefGoogle Scholar
  31. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidyl-inositol turnover, J. Biol. Chem. 255:2273–2276.PubMedGoogle Scholar
  32. Kloprogge, E., and Akkerman, J. W. N., 1984, Binding kinetics of PAF-acether to intact human platelets, Biochem. J. 223:901–909.PubMedGoogle Scholar
  33. Kornecki, E., Erlick, Y. H., and Lenox, R. H., 1984, Platelet-activating factor-induced aggregation of human platelets is specifically inhibited by triazolobenzodiazepines, Science 226:1454–1456.PubMedCrossRefGoogle Scholar
  34. Kornecki, E., Lenox, R. H., and Ehrlich, Y. H., 1986, Interaction of platelet activating factor (PAF) and neuroactive drugs with platelets and neural cells, in: New Horizons in Platelet Activating Factor Research (M. Lee and C. Winslow, eds.), Wiley, New York.Google Scholar
  35. Kramer, R. M., Patton, G. M., Pritzker, C. R., and Deykin, D., 1984, Metabolism of platelet-activating factor in human platelets. Transacylase-mediated synthesis of 1 -0-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine, J. Biol. Chem. 259:13316–13320.PubMedGoogle Scholar
  36. Lad, P. M., Olson, C. V., and Grewal, T. S., 1985, Platelet-activating factor mediated effects on human neutrophil function are inhibited by pertussis toxin, Biochem. Biophys. Res. Commun. 129:632– 638.PubMedCrossRefGoogle Scholar
  37. Lapetina, E. G., 1982, Platelet-activating factor stimulates the phosphatidylinositol cycle. Appearance of phosphatidic acid is associated with the release of serotonin in horse platelets, J. Biol. Chem. 257:7314–7317.PubMedGoogle Scholar
  38. Lapetina, E. G., 1983, Action of platelet-activating factor on lipid metabolism and protein phosphorylation of platelets, in: Platelet-Activating Factor and Structurally Related Ether-Lipids (J. Benveniste and B. Arnoux, eds.), Elsevier Science Publications, Amsterdam, pp. 125–134.Google Scholar
  39. Lapetina, E. G., and Siegel, F. L., 1983, Shape change induced in human platelets by platelet-activating factor. Correlation with the formation of phosphatidic acid and phosphorylation of a 40,000-dalton protein, J. Biol. Chem. 258:7241–7244.PubMedGoogle Scholar
  40. Lee, T.-C., Malone, B., and Snyder, F., 1983, Stimulation of calcium uptake by l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) in rabbit platelets: Possible involvement of the lipoxygenase pathway, Arch. Biochem. Biophys. 223:33–39.PubMedCrossRefGoogle Scholar
  41. Lefkowitz, R. J., and Caron, M. G., 1985, Adrenergic receptors: Molecular mechanisms of clinically relevant regulation, Clin. Res. 33:395–406.PubMedGoogle Scholar
  42. Maclntyre, E. E., and Pollock, W. K., 1983, Platelet-activating factor stimulates phosphatidylinositol turnover in human platelets, Biochem. J. 212:433–437.Google Scholar
  43. Naccache, P. H., Molski, M. M., Volpi, M., Becker, E. L., and Shaafi, R. I., 1985, Unique inhibitory profile of platelet activating factor induced calcium mobilization, polyphosphoinositide turnover and granule enzyme secretion in rabbit neutrophils towards pertussis toxin and phorbol ester, Biochem. Biophys. Res. Commun. 130:677–684.CrossRefGoogle Scholar
  44. OFlaherty, J. T., Lees, C. J., Miller, C. H., McCall, C. E., Lewis, J. C., Love, S. H., and Wykle, R. L., 1981, Selective desensitization of neutrophils: Further studies with l-O-alkyl-sn-glycero-3-phosphocholine analogs, J. Immunol. 127:731–737.Google Scholar
  45. OFlaherty, J. T., Surles, J. R., Redman, J., Jacobson, D., Piantadosi, C., and Wykle, R. L., 1986, Binding and metabolism of platelet-activating factor by human neutrophils, J. Clin. Invest. 78:381–388.CrossRefGoogle Scholar
  46. ORourke, F. A., Halenda, S. P., Zavoico, G. B., and Feinstein, M. B., 1985, Inositol 1,4,5-trisphos-phate releases Ca2+ from a Ca2 +-transporting membrane vesicle fraction derived from human platelets, J. Biol. Chem. 260:956–962.Google Scholar
  47. Pieroni, G., and Hanahan, D. J., 1983, Metabolic behavior of acetyl glyceryl ether phosphorylcholine on interaction with rabbit platelets, Arch. Biochem. Biophys. 224:485–493.PubMedCrossRefGoogle Scholar
  48. Pinckard, R. N., Farr, R. S., and Hanahan, D. J., 1979, Physiocochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils, J. Immunol. 123:1847–1857.PubMedGoogle Scholar
  49. Prevost, M.-C., Cariven, C., Simon, M.-F., Chap, H., and Douste-Blazy, L., 1984, Platelet activating factor (PAF-acether) is released into rat alveolar fluid as a consequence of hypoxia, Biochem. Biophys. Res. Commun. 119:58–63.PubMedCrossRefGoogle Scholar
  50. Rink, T. J., Smith, S. W., and Tsien, R. Y., 1982, Cytoplasmic free Ca2+ in human platelets: Ca2 + thresholds and Ca-independent activation for shape-change and secretion, Fed. Eur. Biochem. Soc. 148:21–26.CrossRefGoogle Scholar
  51. Sanchez-Crespo, M., Fernandez-Gallardo, S., Nieto, M.-L., Baranes, J., and Braquet, P., 1985, Inhibition of the vascular actions of immunoglobulin G aggregates by BN 52021, a highly specific antagonist of PAF-acether, Immunopharmacology 10:69–81.Google Scholar
  52. Schlondorff, D., Satriano, J. A., Hagege, J., Perez, J., and Baud, L., 1984, Effect of platelet activating factor and serum-treated zymosan on prostaglandin E2 synthesis, arachidonic acid release, and contraction of cultured rat mesangial cells, J. Clin. Invest. 73:1227–1231.PubMedCrossRefGoogle Scholar
  53. Shaw, J. O., and Henson, P. M., 1980, The binding of rabbit basophil-derived platelet-activating factor to rabbit platelets, Am. J. Pathol. 98:791–810.PubMedGoogle Scholar
  54. Shen, T. Y., Hwang, S.-B., Chang, M. N., Doebber, T. W., Lam, M.-H. T., Wu, M. S., Wang, X., Han, G. Q., and Li, R. Z., 1985, Characterization of a platelet-activating factor receptor antagonist isolated from haifenteng (Piper futokadsura): Specific inhibition of in vitro and in vivo platelet-activating factor-induced effects, Proc. Natl. Acad. Sci. USA 82:672–676.PubMedCrossRefGoogle Scholar
  55. Shukla, S. D., and Hanahan, D. J., 1983, An early transient decrease in phosphatidylinositol 4,5-bisphosphate upon stimulation of rabbit platelets with acetylglycerylether phosphorylcholine (platelet activating factor), Arch. Biochem. Biophys. 227:626–629.PubMedCrossRefGoogle Scholar
  56. Stiles, G. L., Caron, M. G., and Lefkowitz, R. J., 1984, Beta-adrenergic receptors: Biochemical mechanisms of physiological regulation, Physiol. Rev. 64:661–743.PubMedGoogle Scholar
  57. Stimler, N. P., Bloor, C. M., Hugh, T. E., Wykle, R. L., McCall, C. E., and OFlaherty, J. T., 1981, Anaphylactic actions of platelet-activating factor, Am. J. Pathol. 105:64–69.PubMedGoogle Scholar
  58. Takachuk, V. A., Avdonin, P. V., Mazurov, A. V., and Svitina-Ulitina, I. V., 1983, Regulation of platelet-platelet and platelet-surface interactions via membrane receptor-coupled enzyme system, J. Cell. Biol. 97 (Pt. 2): 95a.Google Scholar
  59. Terashita, Z.-I., Isushima, S., Yoshioka, Y., Nomura, H., Inad, Y., and Nishikawa, K., 1983, CV-3988-A specific antagonist of platelet activating factor (PAF), Life Sci. 32:1975–1982.PubMedCrossRefGoogle Scholar
  60. Valone, F. H., 1984a, Isolation of a platelet membrane protein which binds the platelet-activating factor l-0-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine, Immunology 52:169–175.PubMedGoogle Scholar
  61. Valone, F. H., 1984b, Isolation of a human platelet membrane protein which binds the platelet-activating factor l-0-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine, Fed. Proc. 43:1662.Google Scholar
  62. Valone, F. H., 1985, Inhibition of binding of the platelet-activating factor AGEPC to platelets by the AGEPC analog rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl-2-thiazolioethyl phosphate (CV-3988), Biochem. Biophys. Res. Commun. 126:502–508.PubMedCrossRefGoogle Scholar
  63. Valone, F. H., 1986, Quantitation of binding of the platelet-activating factor l-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine (AGEPC) to intact platelets and platelet membranes, in: Methods in Enzymology, Platelets (J. Hawiger, ed.), Academic Press, New York.Google Scholar
  64. Valone, F. H., 1987, Inhibition of platelet-activating factor binding to human platelets by calcium channel blockers, Thromb. Res. 45:427–435. Valone, F. H., andGoetzl, E. J., 1983, Specific binding by human polymorphonuclear leukocytes of the immunological mediator 1 -0-hexadecyl/octadecyl-2-acetyl-sn-glycero-3-phosphocholine, Immu nology 48:141–149.Google Scholar
  65. Valone, F. H., and Johnson, B. J., 1985a, Modulation of cytoplasmic calcium in human platelets by the phospholipid platelet-activating factor l-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, J. Im munol. 134:1120–1124.Google Scholar
  66. Valone, F. H., and Johnson, B., 1985b, Decay of the activating signal after platelet stimulation with l-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, Thromb. Res. 40:385–392.PubMedCrossRefGoogle Scholar
  67. Valone, F. H., Coles, E., Reinhold, V. R., and Goetzl, E. J., 1982, Specific binding of phospholipid platelet activating factor by human platelets, J. Immunol. 129:1637–1641.PubMedGoogle Scholar
  68. Williams, K. A., and Haslam, R. T., 1984, Effects of NaCl and GTP on the inhibition of platelet adenylate cyclase by l-0-octadecyl-2–0-acetyl-sn-glycero-3-phosphorylcholine (snythetic platelet-activating factor), Biochim. Biophys. Acta. 770:216–223.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Frank H. Valone
    • 1
  1. 1.Department of MedicineVeterans Administration Medical Center and the University of CaliforniaSan FransiscoUSA

Personalised recommendations