Advertisement

Enzymatic Control of the Cellular Levels of Platelet-Activating Factor

  • Ten-Ching Lee

Abstract

Platelet-activating factor (PAF) was first coined in 1972 as a term for the soluble substance released after an antigen challenge of rabbit basophils that had been sensitized with specific IgE antibody (Benveniste et al., 1972). The chemical structure of PAF was subsequently elucidated as l-alkyl-2-acetyl-sn-glycero-3-phos-phocholine (Benveniste et al., 1979; Demopoulos et al., 1979) that also possessed hypotensive activity (Blank et al., 1979). Vast amounts of data in the literature demonstrated that different cell types from various species were able to produce PAF. However, it is apparent that for a given cell type, especially those in blood, a specific stimulus is required to induce PAF (Tables 1 and 2). In addition to being produced by the cell types listed in Tables 1 and 2, PAF was shown to be present in saliva (Cox et al., 1981) and urine (Sanchez-Crespo et al., 1983) from normal humans; human amniotic fluid from women at the onset of labor and in both fetal and newborn urine (Billah and Johnston, 1983); and in blood from humans, rabbits, and rats, but not from anephric patients or nephrectomized rats (Caramelo et al., 1984).

Keywords

Human Neutrophil Acetyltransferase Activity Nordihydroguaiaretic Acid Rabbit Platelet Enzymatic Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

PAF

platelet-activating factor

GPC

sn-glycero-3-phosphocholine

GP

sn-glycero-3-P

PMN

polymorphonuclear neutrophils

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, I., Smith, J. B., and Silver, M. J., 1983a, Metabolism of platelet-activating factor by blood platelets and plasma, Lipids 18:534–538.PubMedCrossRefGoogle Scholar
  2. Alam, I., Smith, J. B., and Silver, M. J., 1983b, Human and rabbit platelets form platelet-activating factor in response to calcium ionophore, Thromb. Res. 30:71–79.PubMedCrossRefGoogle Scholar
  3. Albert, D. H., and Snyder, F., 1983, Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from l-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation, J. Biol. Chem. 258:97–102.PubMedGoogle Scholar
  4. Albert, D. H., and Snyder, F., 1984, Release of arachidonic acid from l-alkyl-2-acyl-s«-glycero-3-phosphocholine, a precursor of platelet activating factor, in rat alveolar macrophages, Biochim. Biophys. Acta 796:92–101.PubMedGoogle Scholar
  5. Alonso, F., Garcia Gil, M., Sanchez-Crespo, M., and Mato, J. M., 1982, Activation of l-alkyl-2-lyso-glycero-3-phosphocholine. Acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes, J. Biol. Chem. 257:3376–3378.PubMedGoogle Scholar
  6. Arnoux, B., Duval, D., and Benveniste, J., 1980, Release of platelet-activating factor (PAF-acether) from alveolar macrophages by the calcium ionophore A23187 and phagocytosis, Eur. J. Clin. Invest. 10:437–441.PubMedCrossRefGoogle Scholar
  7. Arnoux, B., Durand, J., Rigaud, M., Vargaftig, B. B., and Benveniste, J., 1981, Release of platelet-activating factor (PAF-acether) and arachidonic acid metabolites from alveolar macrophages, Agents Actions 11:555–556.PubMedCrossRefGoogle Scholar
  8. Arnoux, B., Jouvin-Marche, E., Arnoux, A., and Benveniste, J., 1982, Release of PAF-acether from human blood monocytes, Agents Actions 12:713–716.PubMedCrossRefGoogle Scholar
  9. Ban, C., Billah, M. M, Truong, C. T., and Johnston, J. M., 1986, Metabolism of platelet activating factor PAF (l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in fetal membranes and decidua vera, Arch. Biochem. Biophys. 246:9–18.PubMedCrossRefGoogle Scholar
  10. Benveniste, J., 1979, Release of platelet-activating factor by peritoneal and alveolar macrophages, Monogr. Allergy 14:138–141.PubMedGoogle Scholar
  11. Benveniste, J., Henson, P. M., and Cochrane, C. G., 1972, Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and platelet-activating factor, J. Exp. Med. 136:1356–1377.PubMedCrossRefGoogle Scholar
  12. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boullet, C., and Polonsky, J., 1979, Semi-synthese et structure purposee du facteur activant les plaquettes (PAF); PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine, C. R. Acad. Sci. (Paris) Ser. D 289:1037–1040.Google Scholar
  13. Benveniste, J., Roubin, R., Chignard, M., Jouvin-Marche, E., and Le Couedic, J. P., 1982a, Release of platelet-activating factor (PAF-acether) and 2-lyso-PAF-acether from three cell types, Agents Actions 12:711–713.PubMedCrossRefGoogle Scholar
  14. Benveniste, J., Chignard, M., Le Couedic, J. P., and Vargaftig, B. B., 1982b, Biosynthesis of platelet-activating factor (PAF-acether). II. Involvement of phospholipase A2 in the formation of PAF-acether and lyso-PAF-acether from rabbit platelets, Thromb. Res. 25:375–385.PubMedCrossRefGoogle Scholar
  15. Betz, S. J., and Henson, P. M., 1980, Production and release of platelet-activating factor (PAF); dissociation from degranulation and superoxide production in the human neutrophil, J. Immunol. 125:2756–2763.PubMedGoogle Scholar
  16. Betz, S. J., Lotner, G. Z., and Henson, P. M., 1980, Generation and release of platelet-activating factor (PAF) from enriched preparations of rabbit basophils; failure of human basophils to release PAF, J. Immunol. 125:2749–2755.PubMedGoogle Scholar
  17. Billah, M. M., and Johnston, J. M., 1983, Identification of phospholipid platelet-activating factor (l-O-alkyl-2-acetyl-srt-glycero-3-phosphocholine) in human amniotic fluid and urine, Biochem. Biophys. Res. Commun. 113:51–58.PubMedCrossRefGoogle Scholar
  18. Billah, M. M., Bryant, R. W., and Siegel, M. I., 1985, Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phos-phocholine) by human neutrophils via phospholipase A2, J. Biol. Chem. 260:6899–6906.PubMedGoogle Scholar
  19. Blank, M. L., Snyder, F., Byers, L. W., Brooks B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90:1194–1200.PubMedCrossRefGoogle Scholar
  20. Blank, M. L., Lee, T.-C., Fitzgerald, V., and Snyder, F., 1981a, A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid), J. Biol. Chem. 256:175–178.PubMedGoogle Scholar
  21. Blank, M. L., Cress, E. A., Whittle, T., and Snyder, F., 1981b, In vivo metabolism of a new class of biologically active phospholipids: l-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a platelet-activating hypotensive phospholipid, Life Sci. 29:769–775.PubMedCrossRefGoogle Scholar
  22. Blank, M. L., Cress, E. A., Lee, T.-C., Malone, B., Surles, J. R., Piantadosi, C., Hajdu, J., and Snyder, F., 1982, Structural features of platelet activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) required for hypotensive and platelet serotonin responses, Res. Commun. Chem. Pathol. Pharmacol. 38:3–20.PubMedGoogle Scholar
  23. Blank, M. L., Hall, M. N., Cress, E. A., and Snyder, F., 1983, Inactivation of 1 -alkyl-2-acetyl-sn-glycero-3-phosphocholine by a plasma acetylhydrolase: Higher activities in hypertensive rats, Biochem. Biophys. Res. Commun. 113:666–671.PubMedCrossRefGoogle Scholar
  24. Bussolino, F., Foa, R., Malavasi, F., Ferrando, M. L., and Camussi, G., 1984, Release of platelet-activating factor (PAF)-like material from human lymphoid cell lines, Exp. Hematol. 12:688–693.PubMedGoogle Scholar
  25. Cabot, M. C, Blank, M. L., Welsh, C. J., Horan, M. J., Cress, E. A., and Snyder, F., 1982, Metabolism of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine by cell cultures, Life Sci. 31:2891–2898.PubMedCrossRefGoogle Scholar
  26. Camussi, G., Aglietta, M., Coda, R., Bussolino, F., Piacibello W., and Tetta, C., 1981a, Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: Monocytes, polymorphonuclear neutrophils and basophils, Immunology 42:191–199.PubMedGoogle Scholar
  27. Camussi, G., Tetta, C., Coda, R., and Benveniste, J., 1981b, Release of platelet-activating factor in human pathology. I. Evidence for the occurrence of basophil degranulation and release of platelet-activating factor in systemic lupus erythematosus, Lab. Invest. 44:241–251.PubMedGoogle Scholar
  28. Camussi, G., Bussolino, F., Ghezzo, F., and Pegoraro, L., 1982, Release of platelet-activating factor from HL-60 human leukemic cells following macrophage-like differentiation, Blood 59:16–22.PubMedGoogle Scholar
  29. Camussi, G., Bussolino, F., Tetta, C., Piacibello, W., and Aglietta, M., 1983a, Biosynthesis and release of platelet-activating factor from human monocytes, Int. Arch. Allergy Appl. Immunol. 70:245–251.PubMedCrossRefGoogle Scholar
  30. Camussi, G., Aglietta, M., Malavasi, F., Tetta, C., Piacibello, W., Sanavio, F., and Bussolino, F., 1983b, The release of platelet-activating factor from human endothelial cells in culture, J. Immunol. 131:2397–2403.PubMedGoogle Scholar
  31. Camussi, G., Pawlowski, I., Bussolino, F., Caldwell, P. R. B., Brentjens, J., and Andres, G., 1983c, Release of platelet activating factor in rabbits with antibody-mediated injury of the lung: The role of leukocytes and of pulmonary endothelial cells, J. Immunol. 131:1802–1807.PubMedGoogle Scholar
  32. Caramelo. C., Fernandez-Gallardo, S., Marin-Cao, D., Inarrea, P., Santos, J. C., Lopez-Novoa, J. M., and Sanchez-Crespo, M., 1984, Presence of platelet activating factor in blood from humans and experimental animals. Its absence in anephric individuals, Biochem. Biophys. Res. Commun. 120:785–796.CrossRefGoogle Scholar
  33. Chap, H., Mauco, G., Simon, M. F., Benveniste, J., and Douste-Blazy, L., 1981, Biosynthetic labelling of platelet activating factor from radioactive acetate by stimulated platelets, Nature 289:312–314.PubMedCrossRefGoogle Scholar
  34. Chignard, M., Le Couedic, J. P., Tence, M., Vargaftig, B. B., and Benveniste, J., 1979, The role of platelet-activating factor in platelet aggregation, Nature 279:799–800.PubMedCrossRefGoogle Scholar
  35. Chignard, M., Le Couedic, J. P., Vargaftig, B. B., and Benveniste, J., 1980, Platelet-activating factor (PAF-acether) secretion from platelets: Effect of aggregating agents, Br. J. Haematol. 46:455–464.PubMedCrossRefGoogle Scholar
  36. Chignard, M., Le Couedic, J.-P., Coeffier, E., and Benveniste, J., 1984, PAF-Acether formation and arachidonic acid freeing from platelet ether-linked glyceryl-phosphorylcholine, Biochem. Biophys. Res. Commun. 124:637–643.PubMedCrossRefGoogle Scholar
  37. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983a, Metabolic fate of platelet-activating factor in neutrophils, J. Biol. Chem. 258:6357–6361.PubMedGoogle Scholar
  38. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983b, Selective acylation of lyso platelet activating factor by arachidonate in human neutrophils, J. Biol. Chem. 258:7268–7271.PubMedGoogle Scholar
  39. Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L., 1984, l-O-Alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine: A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259:12014–12019.PubMedGoogle Scholar
  40. Clay, K. L., Murphy, R. C., Andres, J. L., Lynch, J., and Henson, P. M., 1984, Structure elucidation of platelet activating factor derived from human neutrophils, Biochem. Biophys. Res. Commun. 121:815–825.PubMedCrossRefGoogle Scholar
  41. Cox, C. P., Wardlow, M. L., Jorgensen, R., and Farr, R. S., 1981, The presence of platelet-activating factor (PAF) in normal human mixed saliva, J. Immunol. 127:46–50.PubMedGoogle Scholar
  42. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor: Evidence for l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355–9358.PubMedGoogle Scholar
  43. Farr, R. S., Cox, C. P., Wardlow, M. L., and Jorgensen, R., 1980, Preliminary studies of an acid-labile factor (ALF) in human sera that inactivates platelet-activating factor (PAF), Clin. Immunol. Immu-nopathol. 15:318–330.CrossRefGoogle Scholar
  44. Farr, R. S., Wardlow, M. L., Cox, C. P., Meng, K. E., and Greene, D. E., 1983, Human serum acid-labile factor is an acylhydrolase that inactivates platelet-activating factor, Fed. Proc. 42:3120– 3122.PubMedGoogle Scholar
  45. Feuerstein, G., Zukowska-Grojec, Z., Krausz, M. M., Blank, M. L., Snyder, F., and Kopin, I. J., 1982, Cardiovascular and sympathetic effects of l-0-hexadecyl-2-acetyl-sn-glycero-3-phos-phocholine in conscious SHR and WKY rats, Clin. Exp. Hypertens. Theory Practice A4:1335-1350.Google Scholar
  46. Gomez-Cambronero, J., Inarrea, P., Alonso, F., and Sanchez-Crespo, M., 1984, The role of calcium ions in the process of acetyltransferase activation during formation of platelet-activating factor (PAF-acether), Biochem. J. 219:419–424.PubMedGoogle Scholar
  47. Gomez-Cambronero, J., Nieto, M. L., Mato, J. M., and Sanchez-Crespo. M., 1985a, Modulation of lyso-platelet activating factor: acetyl-CoA acetyltransferase from rat splenic microsomes. The role of calcium ions, Biochim. Biophys. Acta 845:511–515.PubMedCrossRefGoogle Scholar
  48. Gomez-Cambronero, J., Velasco, S., Mato, J. M., and Sanchez-Crespo, M., 1985b, Modulation of lyso platelet-activating factor: acetyl-CoA acetyltransferase from rat splenic microsomes. The role of cyclic AMP-dependent protein kinase, Biochim. Biophys. Acta 845:516–519.PubMedCrossRefGoogle Scholar
  49. Hadvary, P., and Baumgartner, H. R., 1983, Activation of human and rabbit blood platelets by synthetic structural analogs of platelet activating factor, Thromb. Res. 30:143–156.PubMedCrossRefGoogle Scholar
  50. Hanahan, D. J., Demopoulos, C. A., Liehr J., and Pinckard, R. N., 1980, Identification of platelet activating factor isolated from rabbit basophils as acetyl glyceryl ether phosphorylcholine, J. Biol. Chem. 255, 5514–5516.PubMedGoogle Scholar
  51. Jouvin-Marche, E., Ninio, E., Beaurain, G., Tence, M., Niaudet, P., and Benveniste, J., 1984, Biosynthesis of PAF-acether (platelet-activating factor). VII. Precursors of PAF-acether and acetyl-transferase activity in human leukocytes, J. Immunol. 133:892–898.PubMedGoogle Scholar
  52. Lalau Keraly, C., and Benveniste, J., 1982, Specific desensitization of rabbit platelets by platelet-activating factor (PAF-acether) and derivatives, Br. J. Haematol. 51:313–322.Google Scholar
  53. Lee, T-C., 1985, Biosynthesis of platelet activating factor: Substrate specificity of l-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase in rat spleen microsomes, J. Biol. Chem. 260:10952–10955.PubMedGoogle Scholar
  54. Lee, T.-C., and Snyder, F., 1985, Function, metabolism, and regulation of platelet activating factor and related ether lipids, in: Phospholipids and Cellular Regulation ,Volume 2, (J. F. Kuo, ed.), CRC Press, Boca Raton, FL, pp. 1–39.Google Scholar
  55. Lee, T.-C., Malone, B., Wasserman, S. I., Fitzgerald, V., and Snyder, F., 1982, Activities of enzymes that metabolize platelet-activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in neutrophils and eosinophils from humans and the effect of a calcium ionophore, Biochem. Biophys. Res. Commun. 105:1303–1308.PubMedCrossRefGoogle Scholar
  56. Lee, T.-C., Lenihan, D. J., Malone, B., Roddy, L. L., and Wasserman, S. I., 1984, Increased biosynthesis of platelet activating factor in activated human eosinophils, J. Biol. Chem. 259:5526–5530.PubMedGoogle Scholar
  57. Lee, T.-C., Malone, B., and Snyder, F., 1986, A new de novo pathway for the formation of l-alkyl-2-acetyl-sn-glycerols, a precursor of platelet activating factor. Biochemical characterization of 1-alkyl-2-lyso-sn-glycero-3-P: acetyl-CoA acetyltransferase, J. Biol. Chem. 261:5373–5377.PubMedGoogle Scholar
  58. Lenihan, D. J., and Lee, T.-C., 1984, Regulation of platelet activating factor synthesis: Modulation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes, Biochem. Biophys. Res. Commun. 120:834–839.PubMedCrossRefGoogle Scholar
  59. Lenihan, D. J., Greenberg, N., and Lee, T.-C., 1985, Involvement of platelet activating factor in physiological stress in the lizard, Anolis carolinensis, Comp. Biochem. Physiol. 81C:81–86.CrossRefGoogle Scholar
  60. Lotner, G. Z., Lynch, J. M., Betz, S. J., and Henson, P. M., 1980, Human neutrophil-derived platelet activating factor, J. Immunol. 124:676–684.PubMedGoogle Scholar
  61. Ludwig, J. C., McManus, L. M., Clark, P. O., Hanahan, D. J., and Pinckard, R. N., 1984, Modulation of platelet-activating factor (PAF) synthesis and release from human polymorphonuclear leukocytes (PMN): Role of extracellular Ca2 + , Arch. Biochem. Biophys. 232:102–110.PubMedCrossRefGoogle Scholar
  62. Lynch, J. M., Lotner, G. Z., Betz, S. J., and Henson, P. M., 1979, The release of a platelet-activating factor by stimulated rabbit neutrophils, J. Immunol. 123:1219–1226.PubMedGoogle Scholar
  63. Malone, B., Lee, T.-C., and Snyder, F., 1985, Inactivation of platelet activating factor (PAF) by rabbit platelets: Lyso-PAF as a key intermediate with phosphatidylcholine as the source of arachidonic acid in its conversion to a tetraenoic acylated product, J. Biol. Chem. 260:1531–1534.PubMedGoogle Scholar
  64. Mclntyre, T. M., Zimmerman, G. A., Satoh, K., and Prescott, S. M., 1985, Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate, J. Clin. Invest. 76:271–280.CrossRefGoogle Scholar
  65. Mencia-Huerta, J. M., and Benveniste, J., 1979, Platelet-activating factor and macrophages. I. Evidence for the release from rat and mouse peritoneal macrophages and not from mastocytes, Eur. J. Immunol. 9:409–415.PubMedCrossRefGoogle Scholar
  66. Mencia-Huerta, J. M., and Benveniste, J., 1981, Platelet-activating factor (PAF-acether) and macrophages. II. Phagocytosis-associated release of PAF-acether from rat peritoneal macrophages, Cell. Immunol. 57:281–292.PubMedCrossRefGoogle Scholar
  67. Mencia-Huerta, J. M., Roubin, R., and Benveniste, J., 1981, Acetyl-coenzyme A (Ac-CoA) and sodium acetate enhance the release of platelet-activating factor (PAF-acether) from murine peritoneal cells, Int. Arch. Allergy Appl. Immunol. 66 (Suppl 1): 178–179.CrossRefGoogle Scholar
  68. Mencia-Huerta, J. M., Roubin, R., Morgat, J. L., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor (PAF-acether). III. Formation of PAF-acether from synthetic substrates by stimulated murine macrophages, J. Immunol. 129:804–808.PubMedGoogle Scholar
  69. Mencia-Huerta, J. M., Lewis, R. A., Razin, E., and Austen, K. F., 1983, Antigen-initiated release of platelet-activating factor (PAF-acether) from mouse bone marrow-derived mast cells sensitized with monoclonal IgE, J. Immunol. 131:2958–2964.PubMedGoogle Scholar
  70. Mueller. H. W.. O’Flaherty, J. T., and Wykle, R. L., 1982, Ether lipid content and fatty acid distribution in rabbit polymorphonuclear neutrophil phospholipids, Lipids 11:12–11.Google Scholar
  71. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1983a, Biosynthesis of platelet activating factor in rabbit polymorphonuclear neutrophils, J. Biol. Chem. 258:6213–6218.PubMedGoogle Scholar
  72. Mueller, H. W., Purdon, A. D., Smith, J. B., and Wykle, R. L., 1983b. 1-O-Alkyl-linked phos-phoglycerides of human platelets: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species. Lipids 18:814–819.PubMedCrossRefGoogle Scholar
  73. Mueller. H. W., O’Flaherty. J. T., and Wykle, R. L., 1984a, The molecular species distribution of platelet activating factor synthesized by rabbit and human neutrophils, J. Biol. Chem. 259:14554–14559.PubMedGoogle Scholar
  74. Mueller, H. W.. O’Flaherty, J. T., Greene, D. G., Samuel, M. P., and Wykle, R. L., 1984b, 1–0-Alkyl-linked glycerophospholipids of human neutrophils: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species, J. Lipid Res. 25:383–388.PubMedGoogle Scholar
  75. Natarajan, V., Zuzarte-Augstin, M.. Schmid, H. H. O., and Graff, G., 1983, The alky lacy 1 and alkenylacyl glycerophospholipids of human platelets, Thromb. Res. 30:119–125.PubMedCrossRefGoogle Scholar
  76. Ninio, E., Mencia-Huerta, J. M., Heymans. F., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor. I. Evidence for an acetyl-transferase activity in murine macrophages, Biochim. Biophys. Acta 710:23–31.PubMedGoogle Scholar
  77. Ninio, E., Mencia-Huerta, J. M., and Benveniste, J., 1983, Biosynthesis of platelet-activating factor (PAF-acether). V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187, Biochim. Biophys. Acta 751:298–304.PubMedGoogle Scholar
  78. Oda, M., Satouchi, K., Yasunaga, K., and Saito, K., 1985, Molecular species of platelet-activating factor generated by human neutrophils challenged with ionophore A23187, J. Immunol. 134:1090–1093.PubMedGoogle Scholar
  79. O’Flaherty, J. T., Salzer, W. L., Cousart, S., McCall, C. E., Piantadosi, C., Surles, J. R., Hammett, M. J., and Wykle, R. L., 1983, Platelet-activating factor and analogues: Comparative studies with human neutrophils and rabbit platelets, Res. Commun. Chem. Pathol. Pharmacol. 39:291–309.PubMedGoogle Scholar
  80. Pieroni, G., and Hanahan, D. J., 1983, Metabolic behavior of acetyl glyceryl ether phosphorylcholine on interaction with rabbit platelets, Arch. Biochem. Biophys. 224:485–493.PubMedCrossRefGoogle Scholar
  81. Pinckard, R. N., Farr, R. S., and Hanahan, D. J., 1979, Physiocochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils, J. Immunol. 123:1847–1857.PubMedGoogle Scholar
  82. Pinckard, R. N., Jackson, E. M., Hoppens, C., Weintraub, S. T., Ludwig, J. C., McManus, L. M., and Mott, G. E., 1984, Molecular heterogeneity of platelet-activating factor produced by human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 122:325–332.PubMedCrossRefGoogle Scholar
  83. Pirotzky, E., Ninio, E., Bidault, J., Pfister, A., and Benveniste, J., 1984, Biosynthesis of platelet-activating factor. VI. Precursor of platelet-activating factor and acetyltransferase activity in isolated rat kidney cells, Lab. Invest. 51:567–572.PubMedGoogle Scholar
  84. Prescott, S. M., Zimmerman, G. A., and Mclntyre, T. M., 1984, Human endothelial cells in culture produce platelet-activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin, Proc. Natl. Acad. Sci. USA 81:3534–3538.PubMedCrossRefGoogle Scholar
  85. Renooij, W., and Snyder, F., 1981, Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) and a hypotensive lipid by cholinephosphotransferase in various rat tissues, Biochim. Biophys. Acta 663:545–556.PubMedGoogle Scholar
  86. Ribbes, G., Ninio, E., Fontan, P., Record, M., Chap., H., Benveniste, J., Douste-Blazy., L., 1985, Evidence that biosynthesis of platelet-activating factor (PAF-acether) by human neutrophils occurs in an intracellular membrane, FEBS Lett. 191:195–199.PubMedCrossRefGoogle Scholar
  87. Roubin, R., Mencia-Huerta, J. M., Landes, A., and Benveniste, J., 1982a, Biosynthesis of platelet-activating factor (PAF-acether). IV. Impairment of acetyl-transferase activity in thioglycollate-elicited mouse macrophages, J. Immunol. 129:809–813.PubMedGoogle Scholar
  88. Roubin, R., Mencia-Huerta, J. M., and Benveniste, J., 1982b, Release of platelet-activating factor (PAF-acether) and leukotrienes C and D from inflammatory macrophages, Eur. J. Immunol. 12:141–146.PubMedCrossRefGoogle Scholar
  89. Saito, H., Hirai, A., Tamura, Y., and Yoshida, S., 1985, The 5-lipoxygenase products can modulate the synthesis of platelet-activating factor (alkyl-acetyl GPC) in Ca-ionophore A 23187-stimulated rat peritoneal macrophages, Prostaglandins Leukotrienes Med. 18:271–286.CrossRefGoogle Scholar
  90. Sanchez-Crespo, M., Alonso, F., and Egido, J., 1980, Platelet-activating factor in anaphylaxis and phagocytosis. I. Release from human peripheral polymorphonuclears and monocytes during the stimulation by ionophore A23187 and phagocytosis but not from degranulating basophils, Immunology 40:645–655.PubMedGoogle Scholar
  91. Sanchez-Crespo, M., Inarrea, P., Alvarez, V., Alonso, F., Egido, J., and Hernando, L., 1983, Presence in normal human urine of a hypotensive and platelet-activating phospholipids, Am. J. Physiol. 244:F706–F711.Google Scholar
  92. Satouchi, K., Pinckard, R. N., and Hanahan, D. J., 1981a, Influence of alky 1 ether chain length of acetyl glyceryl ether phosphorylcholine and its ethanolamine analog on biological activity toward rabbit platelets, Arch. Biochem. Biophys. 211:683–688.PubMedCrossRefGoogle Scholar
  93. Satouchi, K., Pinckard, R. N., McManus, L. M., and Hanahan, D. J., 1981b, Modification of the polar head group of acetyl glyceryl ether phosphorylcholine and subsequent effects upon platelet activation, J. Biol. Chem. 256:4425–4432.PubMedGoogle Scholar
  94. Satouchi, K., Oda, M., Yasunaga, K., and Saito, K., 1985, Evidence for production of 1-acyl-acetyl-sn-glyceryl-3-phosphorylcholine concomitantly with platelet-activating factor, Biochem. Biophys. Res. Commun. 128:1409–1417.PubMedCrossRefGoogle Scholar
  95. Snyder, F., Blank, M. L., Johnson, D., Lee, T.-C., Malone, B., Robinson, M., and Woodard, D., 1986, Alkylacetylglycerols versus lyso-PAF as procursors in PAF biosynthesis and the role of arachidonic acid, Pharmacol. Res. Commun. 18 (Suppl):33–41.PubMedCrossRefGoogle Scholar
  96. Sugiura, T., Onuma, Y., Sekiguchi, N., and Waku, K., 1982, Ether phospholipids in guinea polymorphonuclear leukocytes and macrophages. Occurrence of high levels of l-0-alkyl-2-acyl-sn-glycero-3-phosphocholine, Biochim. Biophys. Acta 712:515–522.PubMedGoogle Scholar
  97. Sugiura, T., Nakajima, M., Sekiguchi, N., Nakagawa, Y., and Waku, K., 1983, Different fatty chain compositions of alkenylacyl, alky lacy 1 and diacyl phospholipids in rabbit alveolar macrophages: High amounts of arachidonic acid in ether phospholipids, Lipids 18:125–129.CrossRefGoogle Scholar
  98. Surles, J. R., Wykle, R. L., O’Flaherty, J. T., Saler, W. L., Thomas, M. J., Snyder, F., and Piantadosi, C., 1985, Facile synthesis of platelet activating factor and racemic analogues containing unsatura-tion in the sn-1 alkyl chain, J. Med. Chem. 28:73–78.PubMedCrossRefGoogle Scholar
  99. Tence, M., Coeffier, E., Heymans, F., Polonsky, J., Godfroid, J. J., and Benveniste, J., 1981, Structural analogs of platelet-activating factor (PAF-acether), Biochemie 63:723–727.CrossRefGoogle Scholar
  100. Tence, M., Coeffier, E., Polonsky, J., and Benveniste, J., 1983, The enantiomer and the positional isomer of platelet-activating factor, Biochim. Biophys. Acta 755:526–530.PubMedCrossRefGoogle Scholar
  101. Tence, M., Jouvin-Marche, E., Bessou, G., Record, M., and Benveniste, J., 1985, Ether-phospholipids composition in neutrophils and platelets, Thromb. Res. 38:207–214.PubMedCrossRefGoogle Scholar
  102. Touqui, L., Jacquemin, C. J., Dumarey, C., and Vargaftig, B. B., 1985a, l-0-Alkyl-acyl-sn-glycero-3-phosphocholine is the precursor of platelet-activating factor in stimulated rabbit platelets. Evidence for an alkylacetyl-glycerophosphorylcholine cycle, Biochim. Biophys. Acta 833:111–118.PubMedGoogle Scholar
  103. Touqui, L., Hatmi, M., and Vargaftig, B. B., 1985b, Human platelets stimulated by thrombin produce platelet activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when the degrading enzyme acetyl hydrolase is blocked, Biochem. J. 229:811–816.PubMedGoogle Scholar
  104. Valone, F. H., Whitmer, D. I., Pickett, W. C., Austen, K. F., and Goetzl, E. J., 1979, The immunological generation of platelet-activating factor and a platelet-lytic factor in the rat, Immunology 37:841–848.PubMedGoogle Scholar
  105. Wykle, R. L., Malone B., and Snyder, F., 1980, Enzymatic synthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipids, J. Biol. Chem. 255:10256–10260.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Ten-Ching Lee
    • 1
  1. 1.Medical and Health Sciences DivisionOak Ridge Associated UniversitiesOak RidgeUSA

Personalised recommendations