Composition of Alkyl Ether-Linked Phospholipids in Mammalian Tissues

  • Takayuki Sugiura
  • Keizo Waku


In 1979, the structure of a lipid chemical mediator of hypersensitivity, platelet-activating factor (PAF) (Benveniste et al., 1972), was proposed to be that of an alkyl ether-containing phospholipid, l-O-alkyl-2-acetyl-sn-glycero-3-phosphocho-line (Benveniste et al., 1979; Demopoulos et al., 1979). Final elucidation of the structure of PAF from IgE-sensitized rabbit basophils was performed in 1980 (Hanahan et al., 1980). The presence of an alkyl ether moiety at the sn-1 position of the glycerol backbone was found to be critically important. At the same time, this unique ether phospholipid was reported to cause dramatic hypotension in a one-kidney, one-clip hypertensive rat (Blank et al., 1979). Thus, the first description of the PAF structure was reported by three independent groups. Moreover, recent precise studies by many investigators revealed that PAF exhibits, in fact, a variety of potent biological activities other than the platelet-activating and hypotensive activities (Benveniste and Arnoux, 1983; Benveniste and Vargaftig, 1983; Lee and Snyder, 1984). For instance, a low concentration of PAF activates or causes the aggregation of leukocytes such as neutrophils, macrophages, and monocytes. PAF was also shown to increase vascular permeability and to cause bronchoconstriction, smooth muscle contraction, constriction of the coronary artery in isolated guinea pig heart, and glycogenosis in perfused rat liver. Very recently, PAF was shown to induce the secretion of amylase in guinea pig pancreas (Söling et al., 1984). The above observations strongly suggest that PAF acts as an autacoid or hormonelike substance in vivo, particularly in inflammatory reactions. The target tissues or cells of PAF seem to be widely spread in the mammalian body.


Molecular Species Ether Lipid Glyceryl Ether Rabbit Platelet Fatty Acyl Residue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, I., Smith, J. B., and Silver, M. J., 1983, Human and rabbit platelets form platelet-activating factor in response to calcium ionophore, Thromb. Res. 30:71–79.PubMedCrossRefGoogle Scholar
  2. Albert, D. H., and Anderson. C. E., 1977, Ether-linked glycerolipids in human brain tumors, Lipids 12:188–192.PubMedCrossRefGoogle Scholar
  3. Albert, D. H., and Snyder, F., 1983, Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from l-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages: Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation, J. Biol. Chem. 258:97–102.PubMedGoogle Scholar
  4. Albert, D. H., and Snyder, F., 1984, Release of arachidonic acid from l-alkyl-2-acyl-sn-glycero-3 phosphocholine, a precursor of platelet-activating factor, in rat alveolar macrophages, Biochim. Biophys. Acta 796:92–101.PubMedGoogle Scholar
  5. Anderson, R., Cumming, R. B., Walton, M., and Snyder, F., 1969, Lipid metabolism in cells grown in tissue culture: 0-alkyl, O-alk-1-eny, and acyl moieties of L-M cells. Biochim. Biophys. Acta 176:491–501.PubMedGoogle Scholar
  6. Ansell, G. B., and Spanner, S., 1965, The action of phospholipase C on ethanolamine plasmalogen (2 acyl-1-alkenylglycerylphosphorylethanolamine), Biochem. J. 97:375–379.PubMedGoogle Scholar
  7. Arthur, G., Covic, L., Wientzek, M., and Choy, P. C., 1985, Plasmalogenase in hamster heart, Biochim. Biophys. Acta 833:189–195.PubMedGoogle Scholar
  8. Benveniste, J., and Arnoux, B. (eds.), 1983, Platelet-activating factor and structurally related ether lipids, Elsevier, Amsterdam.Google Scholar
  9. Benveniste, J., and Vargaftig, B. B., 1983, Platelet-activating factor: An ether lipid with biological activity, in Ether Lipids: Biochemical and Biomedical Aspects (H. K. Mangold and F. Paltauf, eds.), Academic Press, New York, pp. 355–376.Google Scholar
  10. Benveniste, J., Henson, P. M., and Cochrane, C. G., 1972, Leukocytes-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor, J. Exp. Med. 136:1356–1377.Google Scholar
  11. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boullet, C., and Polonsky, J., 1979, Semi-synthese et structure purposee du facteur activant les plaquettes (PAF); PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine, C. R. Acad. Sci. Ser. D (Paris) 289:1037–1040.Google Scholar
  12. Blank, M. L., Wykle, R. L., and Snyder, F., 1973, The retention of arachidonic acid in ethanolamine plasmalogens of rat testes during essential fatty acid deficiency, Biochim. Biophys. Acta 316:28– 34.PubMedGoogle Scholar
  13. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90, 1194–1200.PubMedCrossRefGoogle Scholar
  14. Blank, M. L., Robinson, M., Fitzgerald, V., and Snyder, F., 1984a, Novel quantitative method for determination of molecular species of phospholipids and diglycerides, J. Chromatogr. 298:473– 482.PubMedCrossRefGoogle Scholar
  15. Blank, M. L., Lee, T.-C, Cress, E. A., Malone, B., Figzgerald, V., and Snyder, F., 1984b, Conversion of l-alkyl-2-acetyl-sn-glycerols to platelet activating factor and related phospholipids by rabbit platelets, Biochem. Biophys. Res. Commun. 124:156–163.PubMedCrossRefGoogle Scholar
  16. Blank, M. L., Cress, E. A., Robinson, M., and Snyder, F., 1985, Metabolism of unique diarachidonoyl and linoleoylarachidonoyl species of ethanolamine and choline phosphoglycerides in rat testes, Biochim. Biophys. Acta 833:366–371.PubMedGoogle Scholar
  17. Broekman, M. J., Ward, J. W., and Marcus, A. J., 1981, Fatty acid composition of phosphatidylinositol and phosphatidic acid in stimulated platelets: Persistence of arachidonyl-stearyl structure, J. Biol. Chem. 256:8271–8274.PubMedGoogle Scholar
  18. Caramelo, C., Fernandez-Gallardo, S., Marin-Cao, D., Inarrea, P., Santos, J. C., Lopez-Novoa, J. M., and Sanchez-Crespo, M., 1984, Presence of platelet-activating factor in blood from humans and experimental animals. Its absence in anephric individuals, Biochem. Biophys. Res. Commun. 120:789–796.PubMedCrossRefGoogle Scholar
  19. Carter, H. E., Smith, D. B., and Jones, D. N., 1958, A new ethanolamine-containing lipide from egg yolk, J. Biol. Chem. 232:681–694.PubMedGoogle Scholar
  20. Chap, H., Mauco, G., Simon, M. F., Benveniste, J., and Douste-Blazy, L., 1981, Biosynthetic labelling of platelet activating factor from radioactive acetate by stimulated platelets, Nature 289:312–314.PubMedCrossRefGoogle Scholar
  21. Chignard, M., Le Couedic, J. P., Vargaftig, B. B., and Benveniste, J., 1980, Platelet-activating factor (PAF-acether) secretion from platelets: Effect of aggregating agents, Br. J. Haematol. 46:455–464.PubMedCrossRefGoogle Scholar
  22. Chignard, M., Le Couedic, J. P., Coeffier, E., and Benveniste, J., 1984, PAF-acether formation and arachidonic acid freeing from platelet ether-linked glyceryl-phosphorylcholine, Biochem. Biophys. Res. Commun. 124:637–643.PubMedCrossRefGoogle Scholar
  23. Chilton, F. H., Ellis, J. M., Olson, S. C, and Wykle, R. L., 1984, l-O-Alkyl-2-arachidonoyl-™ glycero-3-phosphocholine: A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259:12014–12019.PubMedGoogle Scholar
  24. Clarke, N. G., and Dawson, R. M. C., 1981, Alkaline ON transacylation: A new method for the quantitative deacylation of phospholipids, Biochem. J. 195:301–306.PubMedGoogle Scholar
  25. Clay, K. L., Murphy, R. C, Andres, J. L., Lynch, J., and Henson, P. M., 1984, Structure elucidation of platelet activating factor derived from human neutrophils, Biochem. Biophys. Res. Commun. 121:815–825.PubMedCrossRefGoogle Scholar
  26. Colard, O., Breton, M., and Bereziat, G., 1984a, Induction by lysophospholipids of CoA-dependent arachidonoyl transfer between phospholipids in rat platelet homogenates, Biochim. Biophys. Acta 793:42–48.PubMedGoogle Scholar
  27. Colard, O., Breton, M., and Bereziat, G., 1984b, Arachidonyl transfer from diacyl phosphatidylcholine to ether phospholipids in rat platelets, Biochem. J. 222:657–662.PubMedGoogle Scholar
  28. Curstedt, T., 1977, Analysis of molecular species of ether analogues of phosphatidylcholines from biological samples, Biochim. Biophys. Acta 489:79–88.Google Scholar
  29. Curstedt, T., 1983, Chromatographic analysis, isolation and characterization of ether lipids, in Ether Lipids: Biochemical and Biomedical Aspects (H. K. Mangold and F. Paltauf, eds.), Academic Press, New York, pp. 1–15.Google Scholar
  30. Dawson, R. M. C, 1976, Analysis of phosphatides and glycolipids by chromatography of their partial hydrolysis or alcoholysis products, in Lipid Chromatographic Analysis ,2nd ed., vol. 1 (G. V. Marinetti, ed.), Marcel Dekker, New York, pp. 149–172.Google Scholar
  31. Debuch, H., and Seng, P., 1972, The history of ether-linked lipids through 1960, in Ether Lipids: Chemistry and Biology (F. Snyder, ed.), Academic Press, New York, pp. 1–24.Google Scholar
  32. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor. Evidence for l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol Chem. 254:9355–9358.PubMedGoogle Scholar
  33. Diagne, A., Fauvel, J., Record, M., Chap, H., and Douste-Blazy, L., 1984, Studies on ether phos pholipids. II. Comparative composition of various tissues from human, rat and guinea pig, Biochim. Biophys. Acta 793:221–231.Google Scholar
  34. Dorman, R. V., Dreyfus, H., Freysz, L., and Horrocks, L. A., 1977, Ether lipid content of phos-phoglycerides from the retina and brain of chicken and calf, Biochim. Biophys. Acta 486:55–59.Google Scholar
  35. El Tamer, A., Record, M., Fauvel, J., Chap, H., and Douste-Blazy, L., 1984, Studies on ether phospholipids. I. A new method of determination using phospholipase A) from guinea pig pancreas: Application to Krebs II ascites cells, Biochim. Biophys. Acta 793:213–220.PubMedGoogle Scholar
  36. Evans, R. W., Weaver, D. E., and Clegg, E. D., 1980, Diacyl, alkenyl, and alkyl ether phospholipids in ejaculated, in utero-, and in vitro-incubated porcine spermatozoa, J. Lipid Res. 21:223–228.PubMedGoogle Scholar
  37. Fallani, A., Bracco, M., Tombaccini, D., Mugnai, G., and Ruggieri, S., 1982, Ether-linked lipids of Balb/c3T3, SV3T3 and Concanavalin A-selected SV3T3 revertant cells, Biochim. Biophys. Acta 711:208–212.PubMedGoogle Scholar
  38. Ferber, E., De Pasquale, G. G., and Resch, K., 1975, Phospholipid metabolism of stimulated lymphocytes: Composition of phospholipid fatty acids, Biochim. Biophys. Acta 398:364–376.PubMedGoogle Scholar
  39. Flesch, I., Ecker, B., and Ferber, E., 1984, Acyltransferase-catalyzed cleavage of arachidonic acid from phospholipids and transfer to lysophosphatides in macrophages derived from bone marrow: Comparison of different donor and acceptor-substrate combinations, Eur. J. Biochem. 139:431–437.PubMedCrossRefGoogle Scholar
  40. Getz. G. S., Bartley. W., Lurie. D., and Notton, B. M., 1968, The phospholipids of various sheep organs, rat liver and of their subcellular fractions, Biochim. Biophys. Acta 152:325–339.PubMedGoogle Scholar
  41. Gottfried, E. L., 1967, Lipids of human leukocytes: Relation to cell type, J. Lipid Res. 8:321–327.PubMedGoogle Scholar
  42. Gross, R. W., 1984, High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: A fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization, Biochemistry 23:158–165.PubMedCrossRefGoogle Scholar
  43. Hanahan, D. J., Ekholm, J., and Jackson, C. M., 1963, Studies on the structure of glyceryl ethers and the glyceryl ether phospholipids of bovine erythrocytes, Biochemistry 2:630–641.PubMedCrossRefGoogle Scholar
  44. Hanahan, D. J., Demopoulos, C. A., Liehr, J., and Pinckard, R. N., 1980, Identification of platelet-activating factor isolated from rabbit basophils as acetyl glyceryl ether phosphorylcholine, J. Biol. Chem. 255:5514–5516.PubMedGoogle Scholar
  45. Holub, B. J., and Kuksis, A., 1978, Metabolism of molecular species of diacylglycerophospholipids, Adv. Lipid Res. 16:1–125.PubMedGoogle Scholar
  46. Horrocks, L. A., 1972, Content, composition and metabolism of mammalian and avian lipids that contain ether groups, in Ether Lipids: Chemistry and Biology (F. Snyder, ed.). Academic Press, New York, pp. 177–272.Google Scholar
  47. Horrocks, L. A., and Ansell, G. B., 1967, Studies on the phospholipids of rat brain which contain glyceryl ethers, Biochim. Biophys. Acta 137:90–97.PubMedGoogle Scholar
  48. Horrocks, L. A., and Sharma, M., 1982, Plasmalogens and O-alkyl glycerophospholipids, in Phospholipids (J. N. Hawthone and G. B. Ansell, eds.), Elsevier, Amsterdam, pp. 51–93.Google Scholar
  49. Jouvin-Marche, E., Ninio, E., Beaurain, G., Tence, M., Niaudet, P., and Benveniste, J., 1984, Biosynthesis of PAF-acether (platelet-activating factor). VII. Precursors of PAF-acether and acetyl-transferase activity in human leukocytes, J. Immunol. 133:892–898.PubMedGoogle Scholar
  50. Kaya, K., Miura, T., and Kubota, K., 1984, Different incorporation rates of arachidonic acid into alkenylacyl, alkylacyl, and diacylphosphatidylethanolamine of rat erythrocytes, Biochim. Biophys. Acta 796:304–311.PubMedGoogle Scholar
  51. Kloprogge, E., De Haas, G. H., Gorter, G., and Akkerman, J. W. N., 1983, Stimulus-response coupling in human platelets. Evidence against a role of PAF-acether in the “third pathway,” Thromb. Res. 30:107–112.PubMedCrossRefGoogle Scholar
  52. Kramer, R. M., and Deykin, D., 1983, Arachidonoyl transacylase in human platelets: Coenzyme A-independent transfer of arachidonate from phosphatidylcholine to lysoplasmenylethanolamine, J. Biol. Chem. 258:13806–13811.PubMedGoogle Scholar
  53. Kramer, R. M., Patton, G. M., Pritzker, C. R., and Deykin, D., 1984, Metabolism of platelet-activating factor in human platelets: Transacylase-mediated synthesis of l-O-alkyl-2-arachidonoyl-sn-glycerol-3-phosphocholine, J. Biol. Chem. 259:13316–13320.PubMedGoogle Scholar
  54. Lee, T.C, and Snyder, F., 1984, Function, metabolism, and regulation of platelet-activating factor and related ether lipids, in Phospholipids and Cellular Regulation (J. F. Kuo, ed.), CRC Press, Boca Raton, Fl, pp. 1–39.Google Scholar
  55. Mahadevappa, V. G., and Holub, B. J., 1982, The molecular species composition of individual diacyl phospholipids in human platelets, Biochim. Biophys. Acta 713:73–79.PubMedGoogle Scholar
  56. Mallet, A. I., and Cunningham, F. M., 1985, Structural identification of platelet activating factor in psoriatic scale, Biochem. Biophys. Res. Commun. 126:192–198.PubMedCrossRefGoogle Scholar
  57. Mangold, H. K., and Totani, N., 1983, Procedures for the analysis of ether lipids, in Ether Lipids: Biochemical and Biomedical Aspects (H. K. Mangold and F. Paltauf, eds.), Academic Press, New York, pp. 377–387.Google Scholar
  58. Marcus, A. J., Safier, L. B., Ullman, H. L., Wong, K. T. H., Broekman, M. J., Weksler, B. B., and Kaplan, K. L., 1981, Effects of acetyl glyceryl ether phosphorylcholine on human platelet function in vitro, Blood 58:1027–1031.PubMedGoogle Scholar
  59. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1982, Ether lipid content and fatty acid distribution in rabbit polymorphonuclear neutrophil phospholipids, Lipids 17:72–77.PubMedCrossRefGoogle Scholar
  60. Mueller, H. W., Purdon, A. D., Smith, J. B., and Wykle, R. L., 1983, 1-O-Alkyl-linked phos phoglycerides of human platelets: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species, Lipids 18:814–819.PubMedCrossRefGoogle Scholar
  61. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1984a, The molecular species distribution of platelet-activating factor synthesized by rabbit and human neutrophils, J. Biol. Chem. 259:14554– 14559.PubMedGoogle Scholar
  62. Mueller, H. W., O’Flaherty, J. T., Greene, D. G., Samuel, M. P., and Wykle, R. L., 1984b, 1-O- Alkyl-linked glycerophospholipids of human neutrophils: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species, J. Lipid Res. 25:383–389.PubMedGoogle Scholar
  63. Nakagawa, Y., and Horrocks, L. A., 1983, Separation of alkenylacyl, alkylacyl and diacyl analogues and their molecular species by high performance liquid chromatography, J. Lipid Res. 24:1268 1275.PubMedGoogle Scholar
  64. Nakagawa, Y., Ishima, Y., and Waku, K., 1982, Changes in the composition of fatty chains of diacyl, alkylacyl and alkenylacyl ethanolamine and choline phosphoglycerides during the development of chick heart ventricular cells, Biochim. Biophys. Acta 712:667–676.PubMedGoogle Scholar
  65. Nakagawa, Y., Sugiura, T., and Waku, K., 1985a, The molecular species composition of diacyl-, alkylacyl and alkenylacylglycerophospholipids in rabbit alveolar macrophages. High amounts of l-O-hexadecyl-2-arachidonyl molecular species in alky lacy lglycerophosphocholine, Biochim. Biophys. Acta 833:323–329.PubMedGoogle Scholar
  66. Nakagawa, Y., Kurihara, K., Sugiura, T., and Waku, K., 1985b, Heterogeneity in the metabolism of the arachidonoyl molecular species of glycerophospholipids of rabbit alveolar macrophages: The interrelationship between metabolic activities and chemical structures of the arachidonoyl molecular species, Eur. J. Biochem. 153:263–268.PubMedCrossRefGoogle Scholar
  67. Nakagawa, Y., Kurihara, K., Sugiura, T., and Waku, K., 1986, Relative degradation of different molecular species of choline glycerophospholipids in opsonized zymosan-stimulated rabbit alveolar macrophages, Biochim. Biophys. Acta 876:601–610.PubMedGoogle Scholar
  68. Nakayama, R., Oda, M., Satouchi, K., and Saito, K., 1985, Generation of acetyl glyceryl ether phosphorylcholine from the rat skin and muscle tissues stimulated by moxibustion, Biochem. Biophys. Res. Commun. 127:629–634.PubMedCrossRefGoogle Scholar
  69. Natarajan, V., Zuzarte-Augustin, M., Schmid, H. H. O., and Graff, G., 1983, The alkylacyl and alkenylacyl glycerophospholipids of human platelets, Thromb. Res. 30:119–125.PubMedCrossRefGoogle Scholar
  70. Ninio, E., Mencia-Huerta, J. M., Heymans, F., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor: I. Evidence for an acetyl-transferase activity in murine macrophages, Biochim. Biophys. Acta 710:23–31.PubMedGoogle Scholar
  71. Oda, M., Satouchi, K., Yasunaga, K., and Saito, K., 1985a, Molecular species of platelet-activating factor generated by human neutrophils challenged with ionophore A23187, J. Immunol. 134:1090– 1093.PubMedGoogle Scholar
  72. Oda, M., Satouchi, K., Yasunaga, K., and Saito, K., 1985b, Production of platelet-activating factor by washed rabbit platelets, J. Lipid Res. 26:1294–1299. Okano, G., Matsuzaka, H., and Shimojo, T., 1980, A comparative study of the lipid composition of white, intermediate, red and heart muscle in rat, Biochim. Biophys. Acta 619:167–175.Google Scholar
  73. Osanai, A., and Sakagami, T., 1979, Compositions of diacyl-, alkenyl-acyl-, and alkyl-acylglyceryl phosphorylcholine and -ethnolamine in male and female rabbit hearts, J. Biochem. 85:1453– 1459.PubMedGoogle Scholar
  74. Paltauf, F., and Polheim, D., 1967, Über das Vorkommen von Glycerinäther-Phosphatiden in der Dünndarmmucosa des Menschen und verschiedener Säugetiere, Hoppe-Seyler’s Z. Physiol. Chem. 348:1551–1553.PubMedCrossRefGoogle Scholar
  75. Paltauf, F., and Polheim, D., 1970. Occurrence of C20 alk-1-enyl and alkyl glycerol ethers in phospholipids of the rat intestinal mucosa, Biochim. Biophys. Acta 210:187–189.PubMedGoogle Scholar
  76. Panganamala, R. V., Horrocks, L. A., Geer, J. C., and Cornwell. D. G., 1971. Positions of double bonds in the monounsaturated alk-1-enyl groups from the plasmalogens of human heart and brain, Chem. Phys. Lipids 6:97–102.PubMedCrossRefGoogle Scholar
  77. Pietruszko, R., 1962. Lipids of red bone marrow from pig epiphyses. Biochim. Biophys. Acta 64:562– 564.CrossRefGoogle Scholar
  78. Pietruszko. R., and Gray, G. M., 1962, The products of mild alkaline and mild acid hydrolysis of plasmalogens, Biochim. Biophys. Acta 56:232–239.PubMedCrossRefGoogle Scholar
  79. Pinckard, R. N.. Jackson, E. M., Hoppens, C., Weintraub, S. T., Ludwig, J. C, McManus, L. M., and Mott, G. E., 1984, Molecular heterogeneity of platelet-activating factor produced by stimulated human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 122:325–332.PubMedCrossRefGoogle Scholar
  80. Polonsky, J., Tence, M., Varenne, P., Das, B. C., Lunel, J., and Benveniste, J., 1980, Release of l-O alkylglyceryl-3-phosphorylcholine, O-deacetyl platelet-activating factor, from leukocytes: Chemical ionization mass spectrometry of phospholipids, Proc. Natl. Acad. Sci. USA 77:7019–7023.PubMedCrossRefGoogle Scholar
  81. Prescott, S. M., and Majerus, P. W., 1981, The fatty acid composition of phosphatidylinositol from thrombin-stimulated human platelets, J. Biol. Chem. 256:579–582.PubMedGoogle Scholar
  82. Pries, C, Aumont, A., and Bottcher, C. J. F., 1966, Analysis of phospholipids, Biochim. Biophys. Acta 125:277–287.Google Scholar
  83. Pugh, E. L., Kates, M., and Hanahan, D. J., 1977, Characterization of the alkyl ether species of phosphatidylcholine in bovine heart, J. Lipid Res. 18:710–716.PubMedGoogle Scholar
  84. Radominska-Pyrek, A., Dabrowiecki, Z., and Horrocks, L. A., 1979, Synthesis and content of ether-linked glycerophospholipids in the Harderian gland of rabbits, Biochim. Biophys. Acta 574:248– 257.PubMedGoogle Scholar
  85. Record, M., El Tamer, A., Chap, H., and Douste-Blazy, L., 1984, Evidence for a highly asymmetric arrangement of ether and diacyl-phospholipid subclasses in the plasma membrane of Krebs II ascites cells, Biochim. Biophys. Acta 778:449–456.PubMedCrossRefGoogle Scholar
  86. Reddy, P. V., and Schmid, H. H. O., 1985, Selectivity of acyl transfer between phospholipids: Arach idonoyl transacylase in dog heart membranes, Biochem. Biophys. Res. Commun. 129:381–388.PubMedCrossRefGoogle Scholar
  87. Renkonen, O., 1963a, Phosphatides of normal human serum. Part I. Fractionation of the phosphatides, Acta Chem. Scand. 17:1925–1938.CrossRefGoogle Scholar
  88. Renkonen, O., 1963b, Isolation of native plasmalogens, Acta. Chem. Scand. 17:634–640.CrossRefGoogle Scholar
  89. Renkonen, O., 1966, Individual molecular species of phospholipids. III. Molecular species of ox-brain lecithins, Biochim. Biophys. Acta 125:288–309.Google Scholar
  90. Renkonen, O., and Luukkonen, A., 1976, Thin-layer chromatography of phospholipids and glycolipids, in Lipid Chromatographic Analysis ,2nd ed., vol. 1 (G. V. Marinetti ed.), Marcel Dekker, New York, pp. 1–58.Google Scholar
  91. Renooij, W., and Snyder, F., 1981, Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor and hypotensive lipid) by cholinephosphotransferase in various rat tissues, Biochim. Biophys. Acta 663: 545–556.PubMedGoogle Scholar
  92. Robert, J., Mandel, P., and Rebel, G., 1976, Neutral lipids and phospholipids from cultured astroblasts, J. Neurochem. 26:771–777.PubMedCrossRefGoogle Scholar
  93. Robinson, M., Blank, M. L., and Snyder, F., 1985, Acylation of lysophospholipids by rabbit alveolar macrophages: Specificities of CoA-dependent and CoA-independent reactions, J. Biol. Chem. 260:7889–7895.PubMedGoogle Scholar
  94. Roubin, R., Mencia-Huerta, J. M., and Benveniste, J., 1982, Release of platelet-activating factor (PAF acether) and leukotrienes C and D from inflammatory macrophages, Eur. J. Immunol. 12:141–146.PubMedCrossRefGoogle Scholar
  95. Ruggieri, S., and Fallani, A., 1979, Lipid composition of Yoshida ascites hepatoma and of livers and blood plasma from host and normal rats, Lipids 14:323–333.PubMedCrossRefGoogle Scholar
  96. Satouchi, K., Oda, M., Yasunaga, K., and Saito, K., 1983, Application of selected ion monitoring to determination of platelet-activating factor, J. Biochem. 94:2067–2070.PubMedGoogle Scholar
  97. Satouchi, K., Oda, M., Saito, K., and Hanahan, D. J., 1984, Metabolism of l-O-alkyl-2-acetyl-sn glycerol by washed rabbit platelets: Formation of platelet-activating factor, Arch. Biochem. Bi ophys. 234:318–321.CrossRefGoogle Scholar
  98. Satouchi, K., Oda, M., Yasunaga, K., and Saito, K., 1985, Evidence for production of l-acyl-2 acetyl-sn-glyceryl-3-phosphorylcholine concomitantly with platelet-activating factor, Biochem. Bi ophys. Res. Commun. 128:1409–1417.CrossRefGoogle Scholar
  99. Schmid, H. H. O., and Takahashi, T., 1968, The alk-1-enyl ether and alkyl ether lipids of bovine heart muscle, Biochim. Biophys. Acta 164:141–147.PubMedGoogle Scholar
  100. Schmid, H. H. O., Bandi, P. C., and Su, K. L., 1975, Analysis and quantification of ether lipids by chromatographic methods, J. Chromatogr. Sci. 13:478–486.PubMedGoogle Scholar
  101. Selivonchik, D. P., Schmid, P. C., Natarajan, V., and Schmid, H. H. O., 1980, Structure and metabolism of phospholipids in bovine epididymal spermatozoa, Biochim. Biophys. Acta 618:242–254.Google Scholar
  102. Snyder, F., 1972, Ether-linked lipids and fatty alcohol precursors in neoplasms, in Ether Lipids: Chemistry and Biology (F. Snyder, ed.), Academic Press, New York, pp. 273–295.Google Scholar
  103. Snyder, F., 1976, Chromatographic analysis of alkyl and alk-1-enyl ether lipids and their derivatives, in Lipid Chromatographic Analysis ,2nd ed. (G. V. Marinetti, ed.), Marcel Dekker, New York, pp. 111–148.Google Scholar
  104. Snyder, F., 1985, Chemical and biological aspects of platelet activating factor: A novel class of acety lated ether-linked choline-phospholipids, in Medical Research Reviews ,vol. 5, Wiley, New York, pp. 107–140.Google Scholar
  105. Snyder, F., Malone, B., and Blank, M. L., 1970, Enzymic synthesis of O-alkyl bonds in glycerolipids, J. Biol. Chem. 245:1790–1799.PubMedGoogle Scholar
  106. Snyder, F., and Snyder, C., 1975, Glycerolipids and Cancer, Prog. Biochem. Pharmacol. 10:1–41.PubMedGoogle Scholar
  107. Snyder, F., Blank, M. L., and Morris, H. P., 1969, Occurrence and nature of O-alkyl and O-alk-1-enyl moieties of glycerol in lipids of Morris transplanted hepatomas and normal rat liver, Biochim. Biophys. Acta 176:502–510.PubMedGoogle Scholar
  108. Söling, H.-D., Eibl, H., and Fest, W., 1984, Acetylcholine-like effects of l-O-alkyl-2-acetyl-sn glycero-3-phosphocholine (platelet-activating factor) and its analogues in exocrine secretory glands, Eur. J. Biochem. 144:65–72.PubMedCrossRefGoogle Scholar
  109. Sugiura, T., and Waku, K., 1983, Ether phospholipids in macrophages, polymorphonuclear leukocytes, lymphocytes and platelets: High levels of l-0-alkyl-2-acyl-sn-glycero-3-phosphocholine, in Platelet-Activating Factor and Structurally Related Ether-Lipids (J. Benveniste and B. Arnoux, eds.), Elsevier, Amsterdam, pp. 291–298.Google Scholar
  110. Sugiura, T., and Waku, K., 1985, CoA-Independent transfer of arachidonic acid from 1,2-diacyl-sn glycero-3-phosphocholine to l-O-alkyl-sn-glycero-3-phosphocholine (lyso platelet-activating factor) by macrophage microsomes, Biochem. Biophys. Res. Commun. 127:384–390.PubMedCrossRefGoogle Scholar
  111. Sugiura, T., Masuzawa, Y., and Waku, K., 1980, Alkenyl and alkyl ether phospholipids in pig mesenteric lymph node lymphocytes, Lipids 15:475–478.PubMedCrossRefGoogle Scholar
  112. Sugiura, T., Onuma, Y., Sekiguchi, N., and Waku, K., 1982, Ether phospholipids in guinea pig polymorphonuclear leukocytes and macrophages: Occurrence of high levels of l-O-alkyl-2-acyl-sn glycero-3-phosphocholine, Biochim. Biophys. Acta 712:515–522.PubMedGoogle Scholar
  113. Sugiura, T., Soga, N., Nitta, H., and Waku, K., 1983a, Occurrence of alkyl ether phospholipids in rabbit platelets: Compositions and fatty chain profiles, J. Biochem. 94:1719–1722.PubMedGoogle Scholar
  114. Sugiura, T., Nakajima, M., Sekiguchi, N., Nakagawa, Y., and Waku, K., 1983b, Different fatty chain compositions of alkenylacyl, alky lacy 1 and diacyl phospholipids in rabbit alveolar macrophages: High amounts of arachidonic acid in ether phospholipids, Lipids 18:125–129.CrossRefGoogle Scholar
  115. Sugiura, T., Katayama, O., Fukui, J., Nakagawa, Y., and Waku, K., 1984, Mobilization of arachidonic acid between diacyl and ether phospholipids in rabbit alveolar macrophages, FEBS Lett. 165:273–276.PubMedCrossRefGoogle Scholar
  116. Sugiura, T., Masuzawa, Y., and Waku, K., 1985, Transacylation of l-O-alkyl-glycero-3-phos-phocholine (lyso platelet-activating factor) and l-O-alkenyl-glycero-3-phosphoethanolamine with docosahexaenoic acid (22:6 3), Biochem. Biophys. Res. Commun. 133:574–580.PubMedCrossRefGoogle Scholar
  117. Swendsen, C. L., Ellis, J. M., Chilton III, F. H., O’Flaherty, J. T., and Wykle, R. L., 1983, 1–0-alkyl-2-acyl-sn-glycero-3-phosphocholine: A novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore A23187, Biochem. Biophys. Res. Commun. 113:72–79.PubMedCrossRefGoogle Scholar
  118. Tence, M., Jouvin-Marche, E., Bessou, G., Record, M., and Benveniste, J., 1985, Ether-phospholipid composition in neutrophils and platelets, Thromh. Res. 38:207–214.CrossRefGoogle Scholar
  119. Thompson, G. A., Jr., and Hanahan, D. J., 1963, Studies on the nature and formation of a-glyceryl ether lipids in bovine bone marrow, Biochemistry 2:641–646.PubMedCrossRefGoogle Scholar
  120. Touqui, L., Hatmi, M., and Vargaftig, B. B., 1985, Human platelets stimulated by thrombin produce platelet-activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when the degrading enzyme acetyl hydrolase is blocked, Biochem. J. 229:811–816.PubMedGoogle Scholar
  121. Viswanathan, C. V., Phillips, F., and Lundberg, W. O., 1968, Two dimensional reaction thin-layer chromatography in the analysis of mixtures of alkenylacyl, alkylacyl and diacyl choline phosphatides, J. Chromatogr. 38:267–273.Google Scholar
  122. Waku, K., and Nakazawa, Y., 1972, Hydrolyses of 1-O-alkyl, 1-O-alkenyl, and l-acyl-2-[l-l4C]-linoleoyl-glycero-3-phosphorylcholine by various phospholipases, J. Biochem. 72:149–155.PubMedGoogle Scholar
  123. Waku, K., Uda, Y., and Nakazawa, Y., 1971, Lipid composition in rabbit sarcoplasmic reticulum and occurrence of alkyl ether phospholipids, J. Biochem. 69:483–491.PubMedGoogle Scholar
  124. Waku, K., Ito, H., Bito, T., and Nakazawa, Y., 1974, Fatty chains of acyl, alkenyl, and alkyl phosphoglycerides of rabbit sarcoplasmic reticulum: The metabolic relationship considered on the basis of structural analyses, J. Biochem. 75:1307–1312.PubMedGoogle Scholar
  125. Waku, K., Nakazawa, Y., and Mori, W., 1976, Phospholipid metabolism in Ehrlich ascites tumor cells: II. Turnover rate of ether phospholipids, J. Biochem. 80:711–716.PubMedGoogle Scholar
  126. Weintraub, S. T., Ludwig, J. C., Mott, G. E., McManus, L. M., Lear, C., and Pinckard, R. N., 1985, Fast atom bombardment-mass spectrometric identification of molecular species of platelet-activating factor produced by stimulated human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 129:868–876.PubMedCrossRefGoogle Scholar
  127. Wood, R., and Snyder, F., 1969, Tumor lipids: Metabolic relationships derived from structural analyses of acyl, alkyl, alk-1-enyl moieties of neutral glycerides and phosphoglycerides, Arch. Biochem. Biophys. 131:478–494.PubMedCrossRefGoogle Scholar
  128. Wykle, R. L., Malone, B., and Snyder, F., 1980, Enzymatic synthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid, J. Biol. Chem. 255:10256–10260.PubMedGoogle Scholar
  129. Yamada, K., Imura, K., Taniguchi, M., and Sakagami, T., 1976, Studies on the composition of phospholipids in rat small intestinal smooth muscle, J. Biochem. 79:809–817.PubMedGoogle Scholar
  130. Yoshioka, S., Nakashima, S., Okano, Y., Hasegawa, H., Ichiyama, A., and Nozawa, Y., 1985, Phospholipid (diacyl, alkylacyl, alkenylacyl) and fatty acyl chain composition in murine mastocytoma cells. J. Lipid Res. 26:1134–1141.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Takayuki Sugiura
    • 1
  • Keizo Waku
    • 1
  1. 1.Faculty of Pharmaceutical SciencesTeikyo UniversitySagamiko, Kanagawa 199-01Japan

Personalised recommendations