Chromatographic Analyses of Ether-Linked Lipids Involved in PAF Metabolism

  • Merle L. Blank
  • Mitchell Robinson
  • Fred Snyder


A number of chromatographic separations were essential in elucidating the structure of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine [(alkylacetyl-GPC) platelet activating factor (PAF)] (Benveniste et al., 1979; Blank et al., 1979; Demopoulos et al., 1979; Hanahan et al., 1980) and chromatography remains an indispensable tool for all biochemical studies involving PAF. The three main types of chromatography used in PAF research are (1) open-column chromatography with columns packed with silicic acid, (2) thin-layer chromatography (TLC) on layers of silica gel, and (3) high-performance liquid chromatography (HPLC) with both normal- and reverse-phase columns. Rather than trying to describe the myriad of modifications of solvent systems that have appeared in the literature, we attempt to review what we consider as basic chromatographic systems for the analyses and isolation of PAF. Because it is important to determine the particular species of alkylacyl-GPC as precursors (reactions catalyzed by phospholipase A2 and acetyl-CoA: acetyltrans-ferase) in the biosynthesis of PAF and the molecular origin of the acyl moieties that acylate alkyllyso-GPC (the latter formed by acetylhydrolase inactivation of PAF), we describe a number of practical chromatographic methods that can be used to identify the subclasses and specific molecular species of the diradyl phospholipids involved. Chromatographic methods that we have used for analysis of alkylacetyl-glycerols (an alternate precursor of PAF) and their metabolites are also described in this chapter.


Molecular Species Glyceryl Ether Rabbit Platelet Individual Molecular Species Phospholipid Molecular Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam, I., Smith, J. B., Silver, M. J., and Ahern, D., 1982, Novel system for separation of phospholipids by high-performance liquid chromatography, J. Chromatogr. 234:218–221.CrossRefGoogle Scholar
  2. Batley, M., Packer, N. H., and Redmond, J. W., 1980, High-performance liquid chromatography of diglyceride p-nitrobenzoates: An approach to molecular analysis of phospholipids, J. Chromatogr. 198:520–525.PubMedCrossRefGoogle Scholar
  3. Benveniste, J., Le Couedic, J. P., Polonsky, J., and Tence, M., 1977, Structural analysis of purified platelet-activating factor by lipases, Nature 269:170–171.PubMedCrossRefGoogle Scholar
  4. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boullet, C., and Polonsky, J., 1979, Semi-synthese et structure proposee du facteur activant les plaquettes (PAF): PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine, C. R. Acad. Sci. [D] (Paris) 289:1037–1040.Google Scholar
  5. Blank, M. L., and Snyder, F., 1970, Long chain fatty alcohols in normal and neoplastic tissues, Lipids 5:337–341.PubMedCrossRefGoogle Scholar
  6. Blank, M. L., and Snyder, F., 1983, Improved high-performance liquid chromatographic method for isolation of platelet-activating factor from other phospholipids, J. Chromatogr. 273:415–420.PubMedCrossRefGoogle Scholar
  7. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90: 1194–1200.PubMedCrossRefGoogle Scholar
  8. Blank, M. L., Cress, E. A., Lee, T.-C., Stephens, N., Piantadosi, C., and Snyder, F., 1983, Quantitative analysis of ether-linked lipids as alkyl and alk-1-enyl-glycerol benzoates by high-performance liquid chromatography, Anal. Biochem. 133:430–436.PubMedCrossRefGoogle Scholar
  9. Blank, M. L., Lee, T.C., Cress, E. A., Malone, B., Fitzgerald, V., and Snyder, F., 1984a, Conversion of l-alkyl-2-acetyl-sn-glycerol to platelet activating factor and related phospholipids by rabbit platelets, Biochem. Biophys. Res. Commun. 124:156–163.PubMedCrossRefGoogle Scholar
  10. Blank, M. L., Cress, E. A., and Snyder, F., 1984b, A new class of antihypertensive neutral lipid: 1-Alkyl-2-acetyl-srt-glycerol, a precursor of platelet activating factor, Biochem. Biophys. Res. Commun. 118:344–350.CrossRefGoogle Scholar
  11. Blank, M. L., Robinson, M., Fitzgerald, V., and Snyder, F., 1984c, Novel quantitative method for determination of molecular species of phospholipids and diglycerides, J. Chromatogr. 298:473–482.PubMedCrossRefGoogle Scholar
  12. Camussi, G., Tetta, C., Segoloni, G., Deregibus, M. C., and Bussolino, F., 1981, Neutropenia induced by platelet-activating factor (PAF-acether) released from neutrophils: The inhibitory effect of prostacyclin (PGI2), Agents Actions 11:550–553.PubMedCrossRefGoogle Scholar
  13. Chap, H., Mauco, G., Simon, M. F., Benveniste, J., and Douste-Blazy, L., 1981, Biosynthetic labeling of platelet-activating factor from radioactive acetate by stimulated platelets, Nature ,289:312–314.PubMedCrossRefGoogle Scholar
  14. Chen, S. S., and Kou, A. Y., 1982, Improved procedure for the separation of phospholipids by high-performance liquid chromatography, J. Chromatogr. 227:25–31.PubMedCrossRefGoogle Scholar
  15. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Snowdson, C., and Wykle, R. L., 1983, Selective acylation of lyso platelet activating factor by arachidonate in human neutrophils, J. Biol. Chem. 258:7268–7271.PubMedGoogle Scholar
  16. Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L., 1984, l-O-Alkyl-2-arachidonoyl-™-glycero-3-phosphocholine, a common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259:12014–12019.PubMedGoogle Scholar
  17. Clarke, N. G., and Dawson, R. M. C., 1981, Alkaline O N-transacylation, a new method for the quantitative deacylation of phospholipids, Biochem. J. 195:301–306.PubMedGoogle Scholar
  18. Crawford, C. G., Plattner, R. D., Sessa, D. J., and Rackis, J. J., 1980, Separation of oxidized and unoxidized molecular species of phosphatidylcholine by high pressure liquid chromatographyLipids ,15:91–94.CrossRefGoogle Scholar
  19. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor, evidence for l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355–9358.PubMedGoogle Scholar
  20. Dickens, B. F., and Thompson, G. A., 1982, Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature, Biochemistry 21:3604–3611.PubMedCrossRefGoogle Scholar
  21. El-Bassiouni, E. A.. Piantadosi, C., and Snyder, F., 1975, Metabolism of alkyldihydroxyacetone phosphate in rat brain, Biochim. Biophys. Acta 388:5–11.PubMedGoogle Scholar
  22. Geurts van Kessel, W. S. M., Hax, W. M. A., Demel, R. A., and DeGier, J., 1977, High performance liquid chromatographic separation and direct ultraviolet detection of phospholipids, Biochim. Biophys. Acta 486:524–530.PubMedGoogle Scholar
  23. Hanahan, D. J., Elkolm, J., and Jackson, C.M., 1963, Studies on the structure of glyceryl ethers and the glyceryl ether phospholipids of bovine erythrocytes, Biochemistry 2:630–641.PubMedCrossRefGoogle Scholar
  24. Hanahan, D. J., Demopoulos, C. A., Liehr, J., and Pinckard, R. N., 1980, Identification of platelet activating factor isolated from rabbit basophils as acetyl glyceryl ether phosphorylcholine, J. Biol. Chem. 255:5514–5516.PubMedGoogle Scholar
  25. Jackson, E. M., Mott, G. E., Hoppens, C., McManus, L. M., Weintraub. S. T., Ludwig, J. C, and Pinckard, R. N., 1984, High performance liquid chromatography of platelet-activating factors, J. Lipid Res. 25:753–757.PubMedGoogle Scholar
  26. Jungalwala. F. B.. Turel. R. J.. Evans. J. E., and McCluer. R. H.. 1975. Sensitive analysis of ethanolamine and serine-containing phosphoglycerides by high-performance liquid chromatography, Biochem. J. 145:517–526.PubMedGoogle Scholar
  27. Jungalwala, F. B.. Hayssen. V.. Pasquini. J. M., and McCluer. R. G.. 1979. Separation of molecular species of sphingomyelin by reverse-phase high-performance liquid chromatography. J. Lipid Res. 20:579–587.PubMedGoogle Scholar
  28. Kito. M., Takamura. H.. Narita, H.. and Urade, R., 1985, A sensitive method for quantitative analysis of phospholipid molecular species by high performance liquid chromatography. J. Biochem. (Tokyo) 98:327–331.Google Scholar
  29. Kramer. R. M.. Patton. G. M., Pritzker, C. R., and Deykin. D., 1984. Metabolism of platelet-activating factor in human platelets, transacylase-mediated synthesis of l-0-alkyl-2-arachidonoyl-sn-glyc ero-3-phosphocholine. J. Biol. Chem. 259:13316–13320.PubMedGoogle Scholar
  30. Kruger. J.. Rabe. H.. Reichmann. G., and Rustow. B., 1984, Separation and determination of di acylglycerols as their naphthylurethanes by high-performance liquid chromatography, J. Chro matogr. 307:387–392.Google Scholar
  31. Kuksis, A., Marai. L., Breckenridge. W. C., Gornall. D. A., and Stachnykl, O.. 1968. Molecular species of lecithins of some functionally distinct rat tissues. Can. J. Physiol. Pharmacol. ,46:511– 524.PubMedCrossRefGoogle Scholar
  32. Malone, B., Lee, T.-C., and Snyder. F., 1985. Inactivation of platelet activating factor by rabbit platelets. J. Biol. Chem. 260:1531–1534.Google Scholar
  33. Mavis. R. D., Bell, R. M., and Vagelos. P. R., 1972. Effect of phospholipase C hydrolysis of membrane phospholipids on membrane enzymes, J. Biol. Chem. 247:2835–2841.PubMedGoogle Scholar
  34. McNamara, M. J. C., Schmitt, J. D., Wykle, R. L.. and Daniel. L. W., 1984, l-O-hexadecyl-2 acetyl-sn-glycerol stimulates differentiation of HL-60 promyelocytic leukemia cells to macrophage like cells. Biochem. Biophys. Res. Commun. 122:824–830.PubMedCrossRefGoogle Scholar
  35. Mencia-Huerta, J. M., and Benveniste, J., 1979, Platelet-activating factor and macrophages. I. Evidence for the release from rat and mouse peritoneal macrophages and not mastocytes, Eur. J. Immunol. 9:409–415.PubMedCrossRefGoogle Scholar
  36. Moore, C., and Snyder. F., 1982, Properties of microsomal acyl coenzyme A reductase in mouse reputial glands, Arch. Biochem. Biophys. 214:489–499.PubMedCrossRefGoogle Scholar
  37. Moschidis, M. C., and Demopoulos. C. A., 1983, Silicic acid chromatography of phosphonolipids. II. Separation of l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphonocholine from l-0-alkyl-2-acetyl-sn-glyc eryl-3-phosphoryl choline, cardiolipin and other related phospholipids, J. Chromatogr. 259:504– 507.PubMedCrossRefGoogle Scholar
  38. Myher, J. J., and Kuksis, A., 1982, A resolution of diacylglycerol moieties of natural glycero-phos pholipids by gas-liquid chromatography on polar capillary columns. Can. J. Biochem. 60:638– 650.PubMedCrossRefGoogle Scholar
  39. Nakagawa. Y., and Horrocks, L. A., 1983, Separation of alkenylacyl, alkylacyl, and diacyl analogues and their molecular species by high performance liquid chromatography, J. Lipid Res. 24:1268– 1275.PubMedGoogle Scholar
  40. Nakagawa, Y., Sugiura, T., and Waku. K., 1985, The molecular species composition of diacyl-, alkylacyl-, and alkenylacylglycerophospholipids in rabbit alveolar macrophages. High amounts of l-O-hexadecyl-2-arachidonyl molecular species in alkylacylglycero phosphocholine. Biochim. Biophys. Acta 833:323–329.PubMedGoogle Scholar
  41. Ninio. E., Mencia-Huerta, J. M., Heymans, F., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor. I. Evidence for an acetyl-transferase activity in murine macrophages. Biochim. Biophys. Acta 710:23–31.PubMedGoogle Scholar
  42. Patton, G. M., Fasulo, J. M., and Robins, S. J., 1982, Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography, J. Lipid Res. 23:190–196.PubMedGoogle Scholar
  43. Phillips, F. C, Erdahl, W. L., and Privett, O. S., 1982, Quantitative analysis of lipid classes by liquid chromatography via a flame ionization detector, Lipids 17:992–997.CrossRefGoogle Scholar
  44. Pinckard, R. N., Farr, R. S., and Hanahan, D. J., 1979, Physiochemical and functional identity of rabbit platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils, J. Immunol. 123:1847–1857.PubMedGoogle Scholar
  45. Porter, N. A., Wolf, R. A., and Nixon, J. R., 1979, Separation and purification of lecithins by high pressure liquid chromatography, Lipids 14:20–24.CrossRefGoogle Scholar
  46. Renkonen, O., 1967, The analysis of individual molecular species of polar lipids, Adv. Lipid Res. 5:329–351.PubMedGoogle Scholar
  47. Renkonen, O., 1968, Chromatographic separation of plasmalogenic, alkyl-acyl, and diacyl forms of ethanolamine glycerophosphatides, J. Lipid Res. 9:34–39.PubMedGoogle Scholar
  48. Renooij, W., and Snyder, F., 1981, Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor and a hypotensive lipid) by cholinephosphotransferase in various rat tissues, Biochim. Biophys. Acta 663:545–556.PubMedGoogle Scholar
  49. Robinson, M., and Snyder, F., 1985, Metabolism of platelet activating factor by rat alveolar macrophages: Lyso-PAF as an obligatory intermediate in the formation of alkylarachidonyl glycero-phosphocholine species, Biochim. Biophys. Acta 837:52–56.PubMedGoogle Scholar
  50. Robinson, M., Blank, M. L., and Snyder, F., 1985, Acylation of lysophospholipids by rabbit alveolar macrophages J. Biol. Chem. 260:7889–7895.PubMedGoogle Scholar
  51. Satouchi, K., Pinckard, R. N., McManus, L. M., and Hanahan, D. J., 1981, Modification of the polar head group of acetyl glyceryl ether phosphorylcholine and subsequent effects upon platelet activation, J. Biol. Chem. 256:4425–4432.PubMedGoogle Scholar
  52. Satouchi, K., Oda, M., Saito, K., and Hanahan, D. J., 1984, Metabolism of l-O-alkyl-2-acetyl-sn-glycerol by washed rabbit platelets: Formation of platelet activating factor, Arch. Biochem. Biophys. 234:318–321.PubMedCrossRefGoogle Scholar
  53. Smith. M., and Jungalwala, F. B., 1981, Reversed-phase high performance liquid chromatography of phosphatidylcholine: A simple method for determining relative hydrophobic interactions of various molecular species, J. Lipid Res. 22:697–704.PubMedGoogle Scholar
  54. Snyder, F., Lee, T.-C., and Wykle, R. L., 1985, Ether-linked glycerolipids and their bioactive species: Enzymes and metabolic regulation, in: The Enzymes of Biological Membranes ,Volume 2 (A. N. Martonosi, ed.), Plenum Press, New York, pp. 1–58.CrossRefGoogle Scholar
  55. Tence, M., Polonsky, J., LeCouedic, J-P., and Benveniste, J., 1980, Release, purification, and characterization of platelet-activating factor (PAF), Biochimie 62:251–259.PubMedCrossRefGoogle Scholar
  56. Tence, M., Coeffier, E., Heymans, F., Polonky, J., Godfroid, J. J., and Benveniste, J., 1981, Structural analogs of platelet-activating factor (PAF-acether), Biochimie 63:723–727.PubMedCrossRefGoogle Scholar
  57. Wardlow, M. L., 1985, Rapid isocratic procedure for the separation of platelet-activating factor from phospholipids in human saliva by high-performance liquid chromatography, J. Chromatogr. 342:380–384.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Merle L. Blank
    • 1
  • Mitchell Robinson
    • 1
  • Fred Snyder
    • 1
  1. 1.Medical and Health Sciences DivisionOak Ridge Associated UniversitiesOak RidgeUSA

Personalised recommendations