Antineoplastic Actions of Ether Lipids Related to Platelet-Activating Factor

  • Wolfgang E. Berdel
  • Paul G. Munder


Many inorganic and organic biological response modifiers, which stimulate host defense mechanisms against infections and tumors (Oldham, 1982), share one biochemical effect. After phagocytosis by macrophages, they activate or induce a phospholipase A2 (E.C. which degrades cellular phosphatidylcholine and phosphatidylethanolamine to the corresponding lyso compounds as 2-lysophospha-tidylcholine (2-LPC) and free fatty acids (Munder and Modolell, 1974; Munder et al., 1966, 1969, 1970, 1976). Compounds without immunopotentiating capacity do not alter the activity of phospholipase A2 (Munder et al., 1976).


Ether Lipid Antineoplastic Action Glyceryl Ether Ehrlich Ascites Tumor Cell Ehrlich Ascites Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aglietta, M., Piacibello, W., Sanavio, F., and Gavosto, F., 1982, Effect of alkyl-lysophospholipids on the in vitro growth of leukemic cells and of normal granulomonopoietic precursors (CFU-GM), in: 3rd International Symposium on Therapy of Acute Leukemias (Rome, December 11–14, 1982), abstracts, p. 175.Google Scholar
  2. Albert, D. H., and Anderson, C. E., 1977, Ether-linked glycerolipids in human brain tumors, Lipids 12:188.PubMedCrossRefGoogle Scholar
  3. Ando, K., Kodama, K., Kato, A., Tamura, G., and Arima, K., 1972, Antitumor activity of glyceryl ethers, Cancer Res. 32:125.PubMedGoogle Scholar
  4. Andreesen, R., Modolell, M., Weltzien, H. U., Eibl, H., Common, H. H., Löhr, G. W., and Munder, P. G., 1978, Selective destruction of human leukemic cells by alkyl-lysophospholipids, Cancer Res. 38:3894.PubMedGoogle Scholar
  5. Andreesen, R., Modolell, M., and Munder, P. G., 1979a, Selective sensitivity of chronic myelogenous leukemia cell populations to alkyl-lysophospholipids, Blood 54:519.PubMedGoogle Scholar
  6. Andreesen, R., Modolell, M., Speth, V., and Munder, P. G., 1979b, Human macrophage activation by alkyl-lysophospholipids, Immunobiology 156:255.Google Scholar
  7. Andreesen, R., Modolell, M., Weltzien, H. U., and Munder, P. G., 1979c, Alkyl-lysophospholipid induced suppression of human lymphocyte response to mitogens and selective killing of lympho-blasts, Immunobiology 156:498.CrossRefGoogle Scholar
  8. Andreesen, R., Oepke, G., Modolell, M. Runge, M., Löhr, G. W., and Munder, G. P., 1981, Synthetische Alkyl-lysophospholipide: Selektive Tumorzellzerstörung und Makrophagenak-tivierung in vitro, Verh. Dtsch. Ges. Inn. Med. 87:1124.Google Scholar
  9. Andreesen, R., Modolell, M., Oepke, G. H. F., Common, H., Löhr, G. W., and Munder, G. P., 1982, Studies on various parameters influencing leukemic cell destruction by alkyl-lysophospholipids, Anticancer Res. 2:95.PubMedGoogle Scholar
  10. Andreesen, R., Modolell, M., Oepke, G. H. F., and Munder, P. G., 1983, Temperature dependence of leukemic cell destruction by alkyl-lysophospholipids, Exp. Hematol. 11:564.PubMedGoogle Scholar
  11. Andreesen, R., Osterholz, J., Luckenbach, G. A., Costabel, U., Schulz, A., Speth, V., Munder, P. G., and Löhr, G. W., 1984, Tumor cytotoxicity of human macrophages after incubation with synthetic analogues of 2-lysophosphatidylcholine, J. Natl. Cancer Inst. 72:53.PubMedGoogle Scholar
  12. Andreesen, R., Neumann, H., Dulisch, I., and Löhr, G. W., 1985, Colony growth of normal and malignant hematopoietic precursor cells after incubation with synthetic alkyl-lysophospholipids (ALP), Blut 51:194.Google Scholar
  13. Arnold, D., Weltzien, H. U., and Westphal, O., 1967, Synthesen von Cholinphosphatiden. III. Überdie Synthese von Lysolecithinen und ihren Ätheranaloga. Liebigs Ann. Chem. 709:234.Google Scholar
  14. Arnold, B., Reuther, R., and Weltzien, H. U., 1978, Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice, Biochim. Biophys. Acta 530:47.PubMedGoogle Scholar
  15. Arnold, B., Miller, J. F. A. P., and Weltzien, H. U., 1979a, Lysolecithin analogs as adjuvants in delayed-type hypersensitivity in mice. I. Characterization of the adjuvant effect, Eur. J. Immunol 9:363.PubMedCrossRefGoogle Scholar
  16. Arnold, B., Staber, F. G., and Miller, J. F. A. P., 1979b, Lysolecithin analogs as adjuvants in delayed-type hypersensitivity in mice. II. Studies on the mode of action. Eur. J. Immunol. 9:367.Google Scholar
  17. Bador, H., Morelis, R., and Louisot, P., 1983, Biochemical evidence for the role of alkyl-lysophospho-lipids on liver sialyltransferase. Int. J. Biochem. 15:1137.Google Scholar
  18. Bauchinger, M., Dresp, J., Schmid. E., and Berdel, W. E., 1983, Cytogenetic effects of an alkyl-lysophospholipid derivative in human peripheral lymphocytes exposed in vitro and in vivo. Mutation Res. 121:225.PubMedCrossRefGoogle Scholar
  19. Bausert, W., 1978. Der Einfluß von synthetischen Lysolecithin-Analoga auf das Wachstum experi-menteller Tumoren der Maus,’’ Ph.D. Thesis, University of Freiburg. Freiburg, FRG.Google Scholar
  20. Berdel, W. E., and Munder, P. G., 1981, Metastatic growth of 3-Lewis lung carcinoma in mice treated with alkyl-lysophospholipids and lysophospholipid-induced peritoneal macrophages. Anticancer Res. 1:397.PubMedGoogle Scholar
  21. Berdel, W. E., Fink, U., and Munder, P. G., 1979, Synthetic lysophospholipids render macrophages cytotoxic. Fifth Meeting, International Society of Haematology, European and African Division ,(Hamburg, FRG). Abstract I, p. 24.Google Scholar
  22. Berdel, W. E., Bausert, W. R., Weltzien, H. U., Modolell, M. L., Widmann, K. H., and Munder, P. G., 1980a, The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of 3-Lewis-lung carcinoma, Eur. J. Cancer 16:1199.PubMedGoogle Scholar
  23. Berdel, W. E., Fink, U., Egger, B.. Reichert. A., Munder, P. G., and Rastetter, J., 1980b, Wachstum-shemmung menschlicher Hypernephrome durch autologe Makrophagen nach Inkubation mit Alkyl-Lysophospholipiden in vitro, Blut 41:283.Google Scholar
  24. Berdel, W. E., Bausert, W. R. E., Fink, U., Rastetter, J., and Munder, P. G., 1981a, Anti-tumor action of alkyl-lysophospholipids (Review), Anticancer Res. 1:345.PubMedGoogle Scholar
  25. Berdel, W. E., Fink, U., Egger, B., Reichert, A., Munder, P. G., and Rastetter, J., 1981b, Growth inhibition of malignant hypernephroma cells by autologous lysophospholipid incubated macrophages obtained by a new method, Anticancer Res. 1:135.PubMedGoogle Scholar
  26. Berdel, W. E., Greiner, E., Fink, U., Stünkel, K., Thiel, E., Schwarzkopf, G., and Rastetter. J., 1981c, Alkyl-lysophospholipid incubated human macrophages inhibit the growth of autologous solid tumors in vitro, Exp. Hematol. (Suppl.) 9:29.Google Scholar
  27. Berdel, W. E., Fink, U., Egger, B., Reichert, A., Munder, P. G., and Rastetter, J., 1981d, Inhibition by alkyl-lysophospholipids of tritiated thymidine uptake in cells of human malignant urologic tumors, J. Natl. Cancer Inst. 66:813.PubMedGoogle Scholar
  28. Berdel, W. E., Fink, U., Egger, B., Reichert, A., Munder, P. G., and Rastetter, J., 1981e. Alkyl-lysophospholipids inhibit the growth of hypernephroid carcinomas in vitro, J. Cancer Res. Clin. Oncol. 101:325.PubMedCrossRefGoogle Scholar
  29. Berdel, W. E., Fink, U., Thiel, E., Stünkel, K., Greiner, E., Schwarzkopf, G.. Reichert, A., and Rastetter, J., 1982a, Purification of human monocytes by adherence to polymeric fluorocarbon. Characterization of the monocyte-enriched cell fraction, Immunobiology 163:511.PubMedGoogle Scholar
  30. Berdel, W. E., Schlehe, H., Fink, U., Emmerich, B., Maubach, P. A., Emslander, H. P., Daum, S., and Rastetter, J., 1982b, Early tumor and leukemia response to alkyl-lysophospholipids in a phase I study, Cancer 50:2011.PubMedCrossRefGoogle Scholar
  31. Berdel, W. E., Fink, U., Maubach, P. A., Permanetter, B., and Rastetter, J., 1982c, Response of acute myelomonocytic leukemia to alkyl-lysophospholipids. A case report. Blut 44:177.Google Scholar
  32. Berdel. W. E., Luz, A., Rastetter, J., Fink, U., Gössner, W., and Messerschmidt, O., 1983a, Alkyl-lysophospholipids lack influence on the occurrence of radiation-induced lymphomas and AKR-leukemia, Cancer Lett. 20:215.PubMedCrossRefGoogle Scholar
  33. Berdel, W. E., Greiner, E., Fink, U., Stavrou, D., Reichert, A., Rastetter, J., Hoffman, D. R., and Snyder, F., 1983b, Cytotoxicity of alkyl-lysophospholipid derivatives and low-alkyl-cleavage enzyme activity in rat brain tumor cells, Cancer Res. 43:541.PubMedGoogle Scholar
  34. Berdel, W. E., Fink, U., and Rastetter, J., 1983c, Phase I pilot study of the alkyl-lysophospholipid ET-18-OCH3, in: 4th NCI-EORTC Symposium on New Drugs in Cancer Therapy (Brussels, December 14–17, 1983), abstract 83.Google Scholar
  35. Berdel, W. E., Fromm, M., Fink, U., Pahlke, W., Bicker, U., Reichert, A., and Rastetter, J., 1983d, Cytotoxicity of thioether-lysophospholipids in leukemias and tumors of human origin. Cancer Res. 43:5538.PubMedGoogle Scholar
  36. Berdel, W. E., Greiner, E., Fink, U., Zänker, K. S., Stavrou, D., Trappe, A., Fahlbusch, R., Reichert, A., and Rastetter, J., 1984, Cytotoxic effects of alkyl-lysophospholipids in human brain tumor cells, Oncology 41:140.PubMedCrossRefGoogle Scholar
  37. Berdel, W. E., Schick, H. D., Fink, U., Reichert, A., Ulm, K., and Rastetter, J., 1985, Cytotoxicity of the alkyl-linked lipoidal amine 4-aminomethyl-l-(2,3-(di-n-decyloxy)-n-propyl)-4-phenylpiperidine (CP-46,665) in cells from human tumors and leukemias, Cancer Res. 45:1206.Google Scholar
  38. Berdel, W. E., Andreesen, R., and Munder, P. G., 1986, Synthetic alkyl-phospholipid analogs: A new class of antitumor agents, in: Phospholipids and Cellular Regulation ,Volume II (J. F. Kuo, ed.), CRC Press, Boca Raton, Florida, pp. 41–73.Google Scholar
  39. Berger, M., Munder, P. G., Schmähl, D., and Westphal, O., 1984, Influence of the alkyl-lysophospholipid ET-I8-OCH3 on methylnitrosourea-induced rat mammary carcinomas, Oncology 41:109.PubMedCrossRefGoogle Scholar
  40. Bertermann, O., and Andreesen, R., 1983, Experimental studies with alkyl-lysophospholipids in soft tissue sarcomas, in: Proceedings of the 13th International Congress of Chemotherapy (Vienna, August 28-September 2, 1983), (K. H. Spitzy and K. Karrer, eds.), Abstracts SE 12.4.7 A, part 257, pp. 2–5.Google Scholar
  41. Bertermann, O., Andreesen, R., and Runge, M., 1983, Adjuvant treatment of soft tissue sarcomas with lysolecithin-A new class of antimetabolites, in: Chirurgisches Forum ’83 für experimentelle und klinische Forschung (H. W. Schreiber, ed.), Springer, Berlin, p. 105.Google Scholar
  42. Boeryd, B., and Hallgren, B., 1980, Action on various experimental tumour-host systems of methoxy-substituted glycerol ethers incorporated into the feed, Acta Pathol. Microbiol. Immunol. Scand. [A] 88:11.Google Scholar
  43. Boeryd, B., Hallgren, B., and Ställberg, G., 1971, Studies on the effect of methoxy-substituted glycerol ethers on tumour growth and metastasis formation, Br. J. Exp. Pathol. 52:221.PubMedGoogle Scholar
  44. Brachwitz, H., Langen, P., Hintsche, R., and Schildt, J., 1982, Halo lipids. V. Synthesis, nuclear magnetic resonance spectra and cytostatic properties of halo analogues of alkyl-lysophospholipids, Chem. Phys. Lipids 31:33.CrossRefGoogle Scholar
  45. Chandrakumar, N. S., and Hajdu, J., 1982, A new method for the stereospecific synthesis of ether phospholipids. Preparation of the amide analog of platelet-activating factor and related derivates, Tetrahedron Lett. 23:1043.CrossRefGoogle Scholar
  46. Davies, E. G., and Cater, D. B., 1973, A study of methods for producing cell-free tumour antigen from BPs mouse ascites tumour, Br. J. Pathol. 54:583.Google Scholar
  47. Dulbecco, R., Bologna, M., and Unger, M., 1980, Control of differentiation of a mammary cell line by lipids, Proc. Natl. Acad. Sci. USA 77:1551.PubMedCrossRefGoogle Scholar
  48. Eibl, H., and Westphal, O., 1967, Synthesen von Cholinphosphatiden. V. Palmitoyl-propandiol-(l,3)-phosphorylcholin (2-Desoxylysolecithin) und .’-Alkandiol-Analoga, Liebigs Ann. Chem. 709:244.CrossRefGoogle Scholar
  49. Eibl, H. J., Arnold, D., Weltzien, H. U., and Westphal, O., 1967, Synthesen von Cholinphosphatiden. I. Zur Synthese von -und -Lecithinen und ihren Ätheranaloga, Liebigs Ann. Chem. 709:226.CrossRefGoogle Scholar
  50. Glasser, L., Somberg, L. B., and Vogler, W. R., 1984, Purging murine leukemic marrow with alkyl-lysophospholipids, Blood 64:1288.PubMedGoogle Scholar
  51. Hallgren, B., 1983, Therapeutic effects of ether-lipids, in: Ether Lipids, Biochemical and Biomedical Aspects (H. K. Mangold), Academic Press, New York, p. 261.Google Scholar
  52. Heim, M. E., Swoboda, M., Pahlke, W., Edler, L., and Bicker, U., 1984, Treatment of autochthonous rat colonic adenocarcinomas with a thioether-lysophospholipid derivative in mono-and combination chemotherapy, J. Cancer Res. Clin. Oncol. 108:316.PubMedCrossRefGoogle Scholar
  53. Helfman, D. M, Barnes, K. C., Kinkade, J. M., Vogler, W. R., Shoji, M., and Kuo, J. F., 1983, Phospholipid-sensitive Ca2 +-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL60 and K562, and its inhibition by alkyl-lysophospholipids, Cancer Res. 43:2955.Google Scholar
  54. Herrmann, D. B. J., 1985, Changes in cellular lipid synthesis of normal and neoplastic cells during cytolysis induced by alkyl-lysophospholipid analogues, JNCI 75:423.PubMedGoogle Scholar
  55. Hill, E. E., and Lands, W. E. ML, 1970, Phospholipid metabolism, in: Lipid Metabolism (S. J. Wakil, ed.), Academic Press, New York, p. 185.Google Scholar
  56. Hoffman, D. R., Hajdu, J., and Snyder, F., 1984, Cytotoxicity of platelet activating factor and related alkyl-phospholipid analogs in human leukemic cells, polymorphonuclear neutrophils and skin fibroblasts, Blood 63:545.Google Scholar
  57. Hong, C. I., An, S. H., Buchheit, D. J., Nechaev, A., Kirisits, A. J., West, C. R., and Berdel, W. E., 1985, l-D-arabinofuranosylcytosine conjugates of ether lipids as potential new antitumor agents, in: Proceedings of the American Association of Cancer Research ,Waverly Press, Baltimore, Volume 26, abstract 945.Google Scholar
  58. Honma, Y., Kasukabe, T., Hozumi, M., Tsushima, S., and Nomura, H., 1981, Induction of differentiation of cultured human and mouse myeloid leukemia cells by alkyl-lysophospholipids, Cancer Res. 41:3211.PubMedGoogle Scholar
  59. Honma, Y., Kasukabe, T., Okabe-Kado, J., Hozumi, M., Tsushima. S., and Nomura, H., 1983a, Antileukemic effect of alkyl-phospholipids. I. Inhibition of proliferation and induction of differentiation of cultured myeloid leukemia cells by alkyl-ethyleneglycophospholipids, Cancer Chemother. Pharmacol. 11:73.PubMedCrossRefGoogle Scholar
  60. Honma, Y., Kasukabe, T., Okabe-Kado, J., Hozumi, M.. Tsushima, S., and Nomura, H., 1983b. Antileukemic effect of alkyl-phospholipids. II. Prolongation of survival times of leukemic mice by alkyl-ethyleneglycophospholipids. Cancer Chemother. Pharmacol. 11:77.PubMedCrossRefGoogle Scholar
  61. Howard, B. V., Morris, H. P., and Bailey, J. M., 1972, Ether-lipids, -glycerol phosphate dehydrogenase, and growth rate in tumors and cultured cells, Cancer Res. 32:1533.Google Scholar
  62. Layton, D., Luckenbach, G. A., Andreesen, R., and Munder, P. G., 1980, The interaction of liposomes with cells: The relation of cell specific toxicity to lipid composition, Eur. J. Cancer 16:1529.PubMedGoogle Scholar
  63. Leser, H. G., Bärlin, E., and Gemsa, D., 1980, Effects of lysolecithin analogues (LLA) on macrophage arachidonic acid metabolism, tumor cytotoxicity, and lymphocyte mitogenicity, Immunobiology 157:243.Google Scholar
  64. Lin, H. J., Ho, F. C. S., and Lee, C. L. H., 1978, Abnormal distribution of 0-alkyl groups in neutral glycerolipids from human hepatocellular carcinomas, Cancer Res. 38:946.PubMedGoogle Scholar
  65. Lin, H. J., Wu, P. C., and Ho, J. C. I., 1980, The ether lipid tumour marker in human liver with hepatocellular carcinoma, Br. J. Cancer 41:320.PubMedCrossRefGoogle Scholar
  66. Long, R. C., Small, W. C., Brynes, R. K., Tidwell, T., Goldstein, J. H., and Vogler, W. R., 1983, Effects of alkyl-lysophospholipids on human leukemic cell lines measured by nuclear magnetic resonance, Cancer Res. 43:770.PubMedGoogle Scholar
  67. Luckenbach, G. A., and Layton, D., 1981, Liposomally activated macrophages; subsequent interaction with L1210 leukemic cells, Int. J. Cancer 27:837.PubMedCrossRefGoogle Scholar
  68. Maistry, L., Robinson, K. M., Evers, P., Munder, P. G., and Andreesen, R., 1980, Morphologic effects of an antitumor agent on human esophageal carcinoma cells in vitro. Scanning Electron Microscopy 3:109.PubMedGoogle Scholar
  69. Modest, E. J., Daniel, L. W., and Wykle, R. L., 1985, Novel phospholipid analogs as membrane-active antitumor agents, in: Bristol-Myers Cancer Symposia ,Volume 8, New Avenues in Developmental Cancer Chemotherapy, London, England.Google Scholar
  70. Modolell, M. L., Niklaus, U., Weltzien, H. U., and Munder, P. G., 1978, Protective and therapeutic effects of tumor antigens extracted by lysophosphatide analogs, 12thInternational Cancer Congress (Buenos Aires, October 5–11. 1978), abstracts.Google Scholar
  71. Modolell, M., Andreesen, R., Pahlke, W., Brugger, U., and Munder, P. G., 1979, Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids, Cancer Res. 39:4681.PubMedGoogle Scholar
  72. Mulder, E., and van Deenen, L. L. M., 1965, Metabolism of red cell lipids. III. Pathways for phospholipid renewal, Biochim. Biophys. Acta 106:348.PubMedGoogle Scholar
  73. Munder, P. G., and Modolell, M., 1973, Adjuvant induced formation of lysophosphatides and their role in immune response, Int. Arch. Allergy 45:133.PubMedCrossRefGoogle Scholar
  74. Munder, P. G., and Modolell, M., 1974, The influence of Mycobacterium bovis and Corynebacterium parvum on the phospholipid metabolism of macrophages, Recent Results Cancer Res. 47:244.Google Scholar
  75. Munder, P. G., Modollel, M., Ferber, E., and Fischer, H., 1966, Phospholipide in quarzgeschädigten Makrophagen, Biochem. Z. 344:310.PubMedGoogle Scholar
  76. Munder, P. G., Ferber, E., Modolell, M., and Fischer, H., 1969, The influence of various adjuvants on the metabolism of phospholipids in macrophages, Int. Arch. Allergy 36:117.PubMedCrossRefGoogle Scholar
  77. Munder, P. G., Modolell, M., Ferber, E., and Fischer, H., 1970, The relationship between macrophages and adjuvant activity, in: Mononuclear Phagocytes (R. Van Furth, ed.), Blackwell Scientific, Oxford, p. 445.Google Scholar
  78. Munder, P. G., Modolell, M., Raetz, W., and Luckenbach, G. A., 1973, Primary antibody formation in vitro by mouse cells in a complete homologous system, Eur. J. Immunol. 3:454.PubMedCrossRefGoogle Scholar
  79. Munder, P. G., Weltzien, H. U., and Modolell, M., 1976, Lysolecithin analogs: A new class of immunopotentiators, in: VII International Symposium on Immunopathology (P. A. Miescher, ed.), Schwabe Publishers, Basel, p. 411.Google Scholar
  80. Munder, P. G., Modolell, M., Andreesen, R., Weltzien, H. U., and Westphal, O., 1979, Lysophospha-tidylcholine (lysolecithin) and its synthetic analogues. Immune modulating and other biologic effects, Springer Semin. Immunopathol. 2:187.CrossRefGoogle Scholar
  81. Munder, P. G., Modolell, M., Bausert, W., Oettgen, H. F., and Westphal, O., 1981, Alkyl-lysophos-pholipids in cancer therapy, in: Augmenting Agents in Cancer Therapy (E. M. Hersh.), Raven Press, New York, p. 441.Google Scholar
  82. Oldham, R. K., 1982, Biological response modifiers program, J. Biol. Response Modif. 1:81.Google Scholar
  83. Pfleger, R. C., Piantadosi, C., and Snyder, F., 1967, The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species, Biochim. Biophys. Acta 144:633.PubMedGoogle Scholar
  84. Robertson, A. F., and Lands, W. E. M., 1964, Metabolism of phospholipids in normal and spherocytic human erythrocytes, J. Lipid Res. 5:88.Google Scholar
  85. Roos, G., and Berdel, W. E., 1985, Effects of an alkyl-lysophospholipid derivative on human hematopoietic cell lines, Leukemia Res. 10:195.CrossRefGoogle Scholar
  86. Runge, M. H., Andreesen, R., Pfleiderer, A., and Munder, P. G., 1980, Destruction of human solid tumors by alkyl-lysophospholipids, J. Natl. Cancer Inst. 64:1301.PubMedGoogle Scholar
  87. Snyder, F., and Wood, R., 1968, The occurrence and metabolism of alkyl and alk-1-enyl ethers of glycerol in transplantable rat and mouse tumors, Cancer Res. 28:972.PubMedGoogle Scholar
  88. Snyder, F., and Wood, R., 1969, Alkyl and alk-1-enyl ethers of glycerol in lipids from normal and neoplastic human tissues, Cancer Res. 29:251.PubMedGoogle Scholar
  89. Soodsma, J. F., Piantadosi, C., and Snyder, F., 1970, The biocleavage of alkyl glyceryl ethers in morris hepatomas and other transplantable neoplasms, Cancer Res. 30:309.PubMedGoogle Scholar
  90. Stein, Y., and Stein, O., 1966, Metabolism of labeled lysolecithin, lysophosphatidyl ethanolamine and lecithin in the rat, Biochim. Biophys. Acta 116:95.Google Scholar
  91. Storme, G., Berdel, W. E., van Blitterswijk, W. J., Bruyneel, E. A., De Bruyne, G. K., and Mareel, M. M., 1985, Antiinvasive effect of racemic-l-0-octadecyl-2–0-methyl-glycero-3-phosphocholine on MO4 mouse fibrosarcoma cells in vitro, Cancer Res. 45:351.PubMedGoogle Scholar
  92. Strannegård, Ö., and Roupe, G., 1976, Adjuvant effect of lysolecithin analogues on the development of contact sensitivity in mice, Int. Arch. Allergy 51:198.PubMedCrossRefGoogle Scholar
  93. Talmadge, J. E., 1983, Interim Report on ALP (Alkyl-lysophospholipids), for the preclinical screen laboratory of the NCI/USA. Tarnowski, G. S., Mountain, I. M., Stock, C. C., Munder, P. G., Weltzien, H. U., and Westphal, O., 1978, Effect of lysolecithin and analogs on mouse ascites tumors, Cancer Res. 38:339.Google Scholar
  94. Tidwell, T., Guzman, G., and Vogler, W. R., 1981, The effects of alkyl-lysophospholipids on leukemic cell lines. I. Differential action on two human leukemic cell lines, HL60 and K562, Blood 57:794.Google Scholar
  95. Vogler, W. R., Winton, E. F., Boggs, R., Long, R., Tidwell, T., Barashick, L., and LaVia, D., 1982, The effect of alkyl-lysophospholipid (ET-I8-OCH3) on granulocyte-macrophage progenitor cells from normal and chronic myelocytic leukemic marrows, Exp. Hematol. 10 (Suppl. 11): 15.Google Scholar
  96. Vogler, W. R., Whigham, E. A., Somberg, L. B., Long, R. C., Jr., and Winton, E. F., 1984, The effect of alkyl-lysophospholipids on tritiatcd thymidine incorporation and clonogenicity in vitro of normal and leukemic human cells, Exp. Hematol. 12:569.PubMedGoogle Scholar
  97. Vogler, W. R., Whigham, E., Bennett, W. D., and Olson, A. C, 1985, Effect of alkyl-lysophospholipids on phosphatidylcholine biosynthesis in leukemic cell lines, Exp. Hematol. 13:629.PubMedGoogle Scholar
  98. Weltzien, H. U., and Westphal, O., 1967, Synthesen von Cholinphosphatiden. IV. O-methylierte und O-acetylierte Lysolecithine, Liebigs Ann. Chem. 709:240.CrossRefGoogle Scholar
  99. Wykle, R. L., and Snyder, F., 1976, Microsomal enzymes involved in the metabolism of ether-linked glycero-lipids and their precursors in mammals, in: The Enzymes of Biological Membranes ,Volume 2 (A. Martonosi, ed.). Plenum Press, New York, p. 87.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Wolfgang E. Berdel
    • 1
  • Paul G. Munder
    • 2
  1. 1.Division of Hematology and Oncology, Department of Medicine ITechnical UniversityMunichFederal Republic of Germany
  2. 2.Max Planck Institute for ImmunobiologyFreiburgFederal Republic of Germany

Personalised recommendations