Biosynthesis and Release of PAF-Acether by Mouse Bone Marrow-Derived Mast Cells

  • Jean Michel Mencia-Huerta
  • Ewa Ninio


The central role of mast cells in allergic diseases has been postulated for a long time. Indeed, when challenged with appropriate stimuli, this cell type is able to release large amounts of performed mediators including vasoactive amines, proteolytic enzymes, acid hydrolases, chemotactic factors (e.g., eosinophil chemotac-tic factor and high molecular weight neutrophil chemotactic factor), and proteoglycans (Agius et al., 1986; Pearce, 1986). Simultaneously with their stimulation, mast cells are also able to generate de novo various mediators derived from membrane lipids such as PAF-acether (platelet-activating factor) and the oxidative metabolites of arachidonic acid, prostaglandins (PG), and leukotrienes (LT). Once released from mast cell, these various preformed and newly generated mediators are likely to create an increase in vascular permeability, cause smooth muscle contraction and mucus secretion, attract other cell types at the site of the reaction, and contribute to local tissue injury.


Mast Cell Antigen Challenge Acetyltransferase Activity Mucosal Mast Cell Mouse Mast Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agius, R. M., Howarth, P. H., Robinson, C., and Holgate, S. T., 1986, Human bronchoalveolar mast cells and their mediators, in: Asthma, Clinical Pharmacology and Therapeutic Progress (A. B. Kay, ed.), Blackwell Scientific, London, pp. 274–285.Google Scholar
  2. Alonso, F., Gil, M. G., Sanchez-Crespo, M., and Mato, J. M., 1982, Activation of l-alkyl-2-lyso-glycero-3-phosphocholine acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes, J. Biol. Chem. 257:3376–3378.PubMedGoogle Scholar
  3. Arnoux, B., Simoes-Caeiro, M. H., Landes, A., Mathieu, M., Duroux, P., and Benveniste, J., 1982, Alveolar macrophages from asthmatic patients release platelet-activating factor (PAF-acether) and lyso-PAF-acether when stimulated with the specific antigen, Am. Rev. Respir. Dis. 125:70.Google Scholar
  4. Baird, B., Menom, A. K., Robertson, D., Webb, W. W., and Holowka, D., 1985, Cell surface crosslinking of IgE-receptor complexes to aggregates larger than dimers results in rapid immobilization and anchoring to a detergent-insoluble cytoskeleton, Fed. Proc. 44:1918.Google Scholar
  5. Benhamou, M., Ninio, E., Salem, P., Hieblot, C., Bessou, G., Pitton, C., Liu, F. T., and Mencia-Huerta, J. M., 1986, Decrease in IgE Fc receptor expression on mouse bone marrow-derived mast cells and inhibition of PAF-acether formation and hexosaminidase release by dexamethasone, J. Immunol. 136:1385–1392.PubMedGoogle Scholar
  6. Benveniste, J., Henson, P. M., and Cochrane, C. G., 1972, Leukocyte-dependent histamine release from rabbit platelets: The role of IgE, basophils and a platelet-activating factor, J. Exp. Med. 136:1356–1377.Google Scholar
  7. Benveniste, J., Camussi, G., and Mencia-Huerta, J. M., 1977, Cellular origins of platelet-activating factor, Fed. Proc. 36:1329.Google Scholar
  8. Benveniste, J., Tencé, M., Varenne, P., Bidault, J., Boullet, C., and Polonsky, J., 1979, Semi-synthese et structure proposée du facteur activant les plaquettes (PAF): PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine, C. R. Acad. Sci. Ser. D 289:1037–1040.Google Scholar
  9. Berenstein, E. H., Garcia-Gil, M., and Siraganian, R. P., 1985, Dexamethasone inhibits receptor-activated phosphatidyl inositol breakdown in rat basophilic leukemia (RBL-2H3) cells, Fed. Proc. 44:1918 (abstract).Google Scholar
  10. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90:1194–1200.PubMedCrossRefGoogle Scholar
  11. Boltz-Nitulescu, G., Plummer, J. M., and Spiegelberg, H. L., 1982, Fc receptors for IgE on mouse macrophages and macrophage-like cell lines, J. Immunol. 128:2265–2268.PubMedGoogle Scholar
  12. Burnet, F. M., 1965, Mast cells in the thymus of NZB mice, J. Pathol. Bact. 89:271–284.CrossRefGoogle Scholar
  13. Braquet, P., Chabrier, P. E., and Mencia-Huerta, J. M., 1987a, The promise of PAF-acether antagonists, in: Advances in Inflammation Research (G. Weissmann, ed.), Raven Press, New York (in press).Google Scholar
  14. Braquet, P., Touqui, L., Shen, T. Y., and Vargaftig, B. B., 1987b, Perspectives in platelet-activating factor research, Pharmac. Rev. (in press).Google Scholar
  15. Capron, A., Dessaint, J. P., Capron M., Joseph, M., Ameisen, J. C., and Tonnel, A. B., 1986, From parasites to allergy: A second receptor for IgE, Immunol. Today 7:15–18.CrossRefGoogle Scholar
  16. Chap, H., Mauco, G., Simon, M. F., Benveniste, J., and Douste-Blazy, L., 1981, Biosynthetic labelling of platelet-activating factor (PAF-acether) from radioactive acetate by stimulated platelets, Nature 289:312–314.PubMedCrossRefGoogle Scholar
  17. Chignard, M., Le Couedic, J. P., Delautier, D., and Benveniste, J., 1983, Formation of PAF-acether and of another aggregating phospholipid by human platelets, Fed. Proc. 42:659.Google Scholar
  18. Church, M. K., 1978, Cromoglycate-like anti-allergic drugs: a review, Drugs of Today 14:281–341.Google Scholar
  19. Crapper, R. M., and Schrader. J. W., 1983, Frequency of mast cell precursors in normal tissues determined by an in vitro assay: Antigen induces parallel increases in the frequency of P-cell precursors and mast cells, J. Immunol. 131:923-928.PubMedGoogle Scholar
  20. Czop, J. K., Fearon, D. T., and Austen, K. F., 1978, Opsonin-independent phagocytosis of activators of the altenative complement pathway by human monocytes, J. Immunol. 120:1132–1138.PubMedGoogle Scholar
  21. Daeron, M., Sterk, A. R., Hirata, F., and Ishizaka, T., 1982, Biochemical analysis of glucocorticoid-induced inhibition of IgE-mediated histamine release from mouse mast cells, J. Immunol. 129:1212–1218.PubMedGoogle Scholar
  22. Demopoulos, C. A., Pinckard. R. N., and Hanahan, D. J., 1979, Platelet-activating factor: Evidence for l-0-alkyl-2-0-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355–9359.PubMedGoogle Scholar
  23. Denburg, J. A., Williams, D. B., Kinlough-Rathbone, R. L., Cazenave, J. P., and Bienenstock, J., 1984, Platelet-activating factor: Regulation by mast cells and aspirin, Agents Actions 14:300–305.PubMedCrossRefGoogle Scholar
  24. Dessaint, J. P., Capron, A., Joseph, M., and Bazin, H., 1979, Cytophilic binding of IgE to macrophages. II. Immunologic release of lysosomal enzyme from macrophages by IgE and anti-IgE in the rat: A new mechanism of macrophage activation. Cell. Immunol. 46:24–34.PubMedCrossRefGoogle Scholar
  25. Di Rosa, M., Flower, R. J., Hirata, F., Parente, L., and Russo-Marie, F., 1984, Antiphospholipase proteins: Nomenclature announcement, Prostaglandins 28:441–442.PubMedCrossRefGoogle Scholar
  26. Dy, M., Lebel, B., Kamoun, P., and Hamburger, J., 1981, Histamine production during the anti-allograft response: Demonstration of a new lymphokine enhancing histamine synthesis, J. Exp. Med. 153:293–309.PubMedCrossRefGoogle Scholar
  27. Eliakim, R., Gilead, L., Ligumsky, M., Okon, E., Rachmilewitz, D., and Razin, E., 1986, Histamine and chondroitin sulfate E proteoglycan released by cultured human colonic mucosa: Indication for possible presence of E mast cells, Proc. Natl. Acad. Sci. USA 83:461–464.PubMedCrossRefGoogle Scholar
  28. Farram, E., and Nelson, D. S., 1980, Mouse mast cells as anti-tumor effector cells, Cell. Immunol. 55:294–301.PubMedCrossRefGoogle Scholar
  29. Foreman, J., and Mongar, J., 1972, The role of alkaline earth ions in anaphylactic histamine secretion, J. Physiol. (Lond.) 224:753–769.Google Scholar
  30. Galoppin, L., Raynaud, F., Ponvert, C., Fray, A., Scheinmann, P., Lespinats, G., Canu, P., and Burtin, C., 1984, Tissue histamine levels and mast cell number in tumour-bearing mice, Agents Actions 14:494–496.PubMedCrossRefGoogle Scholar
  31. Gomez-Cambronero, J., Velasco, S., Mato, J. M., and Sanchez-Crespo, M., 1985, Modulation of lyso platelet-activating factor: Acetyl-CoA acetyl transferase from rat splenic microsomes. The role of cyclic AMP-dependent protein kinase, Biochim. Biophys. Acta 845:516–520.PubMedCrossRefGoogle Scholar
  32. Heiman, A. S., and Crews, F. T., 1984a, Inhibition of immunoglobulin, but not polypeptide base-stimulated release of histamine and arachidonic acid by anti-inflammatory steroids, J. Pharmacol. Exp. Ther. 230:175–182.PubMedGoogle Scholar
  33. Heiman, A. S., and Crews, F. T., 1984b, Hydrocortisone selectively inhibits IgE-dependent arachidonic acid release from rat peritoneal mast cells, Prostaglandins 27:335–343.PubMedCrossRefGoogle Scholar
  34. Heiman, A. S., and Crews, F. T., 1985a, Hydrocortisone inhibits phorbol ester-stimulated release of histamine and arachidonic acid from rat mast cells, Biochem. Biophys. Res. Commun. 130:640– 645.PubMedCrossRefGoogle Scholar
  35. Heiman, A. S., and Crews, F. T., 1985b, Characterization of the effects of phorbol esters on rat mast cell secretion, J. Immunol. 134:548–555.PubMedGoogle Scholar
  36. Hempstead, B. L., Parker, C. W., and Kulczycki, A., 1983, Selective phosphorylation of the IgE receptor in antigen-stimulated rat mast cells, Proc. Natl. Acad. Sci. USA 80:3050–3053.PubMedCrossRefGoogle Scholar
  37. Henderson, W. R., Chi, E. Y., Jong, E. C., and Klebanoff, S. J., 1981, Mast cell-mediated tumor-cell cytotoxicity: Role of the peroxydase system, J. Exp. Med. 151:520–533.CrossRefGoogle Scholar
  38. Ihle, J. N., Pepersack, L., and Rebar, L., 1981, Regulation of T cell differentiation: In vitro induction of 20a-hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lympho-kine, J. Immunol. 126:2184–2189.PubMedGoogle Scholar
  39. Ihle, J. N., Keller, J., Henderson, L., Klein, F., and Palaszynski, W. W., 1982, Procedures for the purification of interleukin 3 to homogeneity, J. Immunol. 129:2431–2437.PubMedGoogle Scholar
  40. Ihle, J. N., Keller, J., Oroszlan, S., Henderson, L. E., Copelandd, T. D., Fitch, F., Prytowsky, M. B., Goldwasser, E., Schrader, J. W., Palaszynski, E., Dy, M., and Lebel, B., 1983, Biologic properties of homogeneous interleukin 3:1. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, colony-stimulating factor activity, and histamine-producing cell growth factor activity, J. Immunol. 131:282–287.Google Scholar
  41. Ishizaka, T., and Ishizaka, K., 1978, Triggering of histamine release from rat mast cells by divalent antibodies against IgE receptors, J. Immunol. 120:800–805.PubMedGoogle Scholar
  42. Ishizaka, T., Okudaira, H., Mauser, L. E., and Ishizaka, K., 1976, Development of rat mast cells in vitro: I. Differentiation of mast cells from thymus cells, J. Immunol. 116:747–754.PubMedGoogle Scholar
  43. Ishizaka, T., Conrad, D. H., Schulman, E. S., Sterk, A. R., Ko, C. G. L., and Ishizaka, K., 1984, IgE-mediated triggering signals for mediator release from human mast cells and basophils, Fed. Proc. 43:2840–2845.PubMedGoogle Scholar
  44. Johnson, H. M., and Torres, B. A., 1984, Leukotrienes: Positive signals for the regulation of (3-interferon production, J. Immunol. 132:413–416.PubMedGoogle Scholar
  45. Joly, F., Bessou, G., and Ninio, E., 1987, Possible role of protein kinase C in acetyltransferase (AT) phosphorylation in immunologically stimulated mouse mast cells, Fed. Proc. 46, 3560.Google Scholar
  46. Kennedy, J. A., Thueson, D. O., and Conroy, M. C., 1986, Intra-and extra-cellular calcium requirements for histamine release from human basophils induced by anti-IgE, tripeptide (FMLP), or A23187, Fed. Proc. 45:386 (abstract).Google Scholar
  47. Kitamura, Y., Shimada, M., Go, S., Matsuda, H., Hatanaka, K., and Seki, M., 1979, Distribution of mast cell precursors in hematopoietic and lymphopoietic tissue in mice, J. Exp. Med. 150:482–490.PubMedCrossRefGoogle Scholar
  48. Lenihan, T. J., and Lee, T.-C., 1984, Regulation of platelet activating factor synthesis: Modulation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes, Biochim. Biophys. Acta 120:834–840.Google Scholar
  49. Lewis, R. A., and Austen, K. F., 1984, The biologically active leukotrienes, J. Clin. Invest. 73:889– 897.PubMedCrossRefGoogle Scholar
  50. Lewis, R. A., Drazen, J. M., Corey, E. J., and Austen, K. F., 1981, Structural and functional characteristics of leukotriene components of slow reacting substance of anaphylaxis, in: SRS-A and Leukotrienes (P. J. Piper, ed.), Wiley, Chichester, pp. 101–117.Google Scholar
  51. Lindau, M., and Fernandez, J. M., 1986, IgE-mediated degranulation of mast cells does not require opening of ion channels, Nature 319:150–153.PubMedCrossRefGoogle Scholar
  52. Liu, F. T., Bohn, J. W., Ferry, E. L., Yamamoto, H., Molinaro, C. A., Sherman, L. A., Klinman, N. R., and Katz, D. H., 1980, Monoclonal dinitrophenyl-specific murine IgE antibody: Preparation, isolation and characterization, J. Immunol. 124:2728–2734.PubMedGoogle Scholar
  53. Maeyana, K., Hohman, R. J., Metzger, H., and Beaven, M. A., 1986, Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water, J. Biol. Chem. 261:2583–2592.Google Scholar
  54. Mayerhofer, G., 1979a, The nature of the thymus dependency of mucosal mast cells: I. An adaptative secondary response to challenge with nippostrongylus braziliensis,Cell. Immunol. 47:304–311.CrossRefGoogle Scholar
  55. Mayerhofer, G., 1979b, The nature of the thymus dependency of mucosal mast cells: II. The effect of thymectomy and depleting recirculating lymphocytes on the response toNippostrongylus braziliensis, Cell. Immunol.47:312–322.CrossRefGoogle Scholar
  56. Mencia-Huerta, J. M., 1985, Possible role of the T cell factor-dependent mast cell subclass in the generation of leukotrienes from lung, Ann. Inst. Pasteur Immunol. 136D:209–212.PubMedCrossRefGoogle Scholar
  57. Mencia-Huerta, J. M., and Benhamou, M., 1986, PAF-acether: An update, in: Asthma, Clinical Phar macology and Therapeutic Progress (A. B. Kay, ed.). Blackwell Scientific, Oxford, pp. 237–251.Google Scholar
  58. Mencia-Huerta, J. M., and Benveniste, J., 1979, Platelet-activating factor (PAF) and macrophages. I. Evidence for the release from rat and mouse peritoneal macrophages and not from mastocytes, Eur. J. Immunol. 9:409–415.PubMedCrossRefGoogle Scholar
  59. Mencia-Huerta, J. M., and Benveniste, J., 1981, Platelet-activating factor (PAF-acether) and macrophages. II. Phagocytosis-associated release of PAF-acether from rat peritoneal macrophages, Cell. Immunol. 57:281–292.PubMedCrossRefGoogle Scholar
  60. Mencia-Huerta. J. M., Akerman, C., and Benveniste, J., 1980. Phospholipase A2 (PLA2). lipo (LO), cyclo (CO)oxygenases and release of platelet-activating factor (PAF) and slow reacting substance (SRS) from rat macrophages. Fed. Proc. 39:691.Google Scholar
  61. Mencia-Huerta, J. M.. Roubin. R.. Morgat, J. L., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor (PAF-acether): III. Formation of PAF-acether from synthetic substrates by stimulated murine macrophages, J. Immunol. 129:804–808.PubMedGoogle Scholar
  62. Mencia-Huerta. J. M., Lewis, R. A.. Razin, E., and Austen. K. F., 1983a. Antigen-initiated release of platelet activating factor (PAF-acether) from mouse bone marrow-derived mast cells, J. Immunol. 131:2958–2964.PubMedGoogle Scholar
  63. Mencia-Huerta. J. M., Razin, E., Ringel. E. W., Corey. E. J.. Hoover, D., Austen. K. F., and Lewis. R. A., 1983b. Immunologic-and ionophore-induced release of leukotriene B4 from mouse bone marrow-derived mast cells. J. Immunol. 130:1885–1890.PubMedGoogle Scholar
  64. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A., and Coffman, R. L., 1986, Two types of murine helper T cell clone: I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348–2357.PubMedGoogle Scholar
  65. Murphy, R. C., Hammarstrom. S., and Samuelsson, B., 1979, Leukotriene C: A slow reacting substance from murine mastocytoma cells, Proc. Natl. Acad. Sci. USA 76:4275–4279.PubMedCrossRefGoogle Scholar
  66. Murphy, R. C., and Henson, P. M., 1985, Mediator network. Ann. Inst. Pasteur Immunol. 136D:219– 221.CrossRefGoogle Scholar
  67. Nabel, G., Galli, S. J., Dvorak, A. M., Dvorak, H. F., and Cantor, H., 1981, Inducer T lymphocytes synthesize factor that stimulates proliferation of cloned mast cells. Nature 291:1914–1919.CrossRefGoogle Scholar
  68. Nagao, K., Yokoro, K., and Aronson, S. A., 1981, Continuous lines of basophils/mast cells derived from normal bone marrow, Science 212:333–335.PubMedCrossRefGoogle Scholar
  69. Ninio, E., Mencia-Huerta, J. M., Heymans, F., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor (PAF-acether). I. Evidence for an acetyl-transferase activity in murine macrophages, Biochim. Biophys. Acta 710:23–31.PubMedGoogle Scholar
  70. Ninio, E., Mencia-Huerta, J. M., and Benveniste, J., 1983, Biosynthesis of platelet-activating factor (PAF-acether). V. Enhancement of acetytransferase activity in murine peritoneal cells by the calcium ionophore A23187, Biochim. Biophys. Acta 751:298–304.PubMedGoogle Scholar
  71. Ninio, E., Joly, F., Hieblot, C., Bessou, G., Mencia-Huerta, J. M., and Benveniste, J., 1987, Role for phosphorylation-dependent activation of acetyltransferase in the biosynthesis of PAF-acether in antigen-stimulated mouse mast cells, J. Immunol ,(in press).Google Scholar
  72. Pearce, F. L., 1986, Mast cell heterogeneity: An overview, in: Asthma, Clinical Pharmacology and Therapeutic Progress (A. B. Kay, ed.), Blackwell Scientific, London, pp. 251–264.Google Scholar
  73. Pinckard, R. N., McManus, L. M., and Hanahan, D. J., 1982, Chemistry and biology of acetyl glyceryl ether phosphorylcholine (platelet-activating factor), in: Advances in Inflammation Research ,Volume 4 (G. Weissmann, ed.), Raven Press, New York, pp. 147–180.Google Scholar
  74. Polonsky, J., Tencé, M., Varenne, P., Das, B. C., Lunel, J., and Benveniste, J., 1980, Release of 1-0-alkyl-glyceryl-3-phosphorylcholine, 0-deacetyl platelet-activating factor from leukocytes: Chemical ionization mass spectrometry of phospholipids, Proc. Natl. Acad. Sci. USA 12:7019–7023.CrossRefGoogle Scholar
  75. Ponvert, C., Galoppin, L., Scheinmann, P., Canu, P., and Burtin, C., 1984, Tissue histamine levels in male and female mast cell deficient mice (W/Wv) and in their littermates WV/ + ,W/ + , and +/ + ), Agents Action 17:1–4.CrossRefGoogle Scholar
  76. Rankin, J. A., Hitchock, M., Merrill. W. W., Bach, M. K., Brashler, J. R., and Askenase, P. W., 1982, IgE-dependent release of leucotriene C4 (LTC4) from alveolar macrophages, Nature (Lond.) 297:329–331.CrossRefGoogle Scholar
  77. Razin, E., Cordon-Cardo, C., and Good, R. A., 1981, Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes, Proc. Natl. Acad. Sci. USA 78:2559–2561.PubMedCrossRefGoogle Scholar
  78. Razin, E., Stevens, R. L., Akiyama, F., Schmid, K., and Austen, K. F., 1982a, Culture from mouse bone marrow of a subclass of mast cells possessing distinct chondroitin sulfate proteoglycans with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate, J. Biol. Chem. 257:7229–7236.PubMedGoogle Scholar
  79. Razin, E., Mencia-Huerta, J. M., Lewis, R. A., Corey, E. J., and Austen, K. F., 1982b, Generation of leukotriene C4 from a subclass of mast cells differentiated in vitro from mouse bone marrow, Proc. Natl. Acad. Sci. USA 79:465–467.CrossRefGoogle Scholar
  80. Razin, E., Ihle, J. N., Seldin, D., Mencia-Huerta, J. M., Katz, H. R., Leblanc, P. A., Hein, A., Caulfield, J. P., Austen, K. F., and Stevens, R. L., 1983a, Interleukin 3: A differentiation and growth factor for the mouse mast cells that contain chondroitin sulfate E proteoglycan, J. Immunol. 132:1479–1486.Google Scholar
  81. Razin, E., Mencia-Huerta, J. M., Stevens, R. L., Lewis, R. A., Liu, F.-T., Corey, E. J., and Austen, K. F., 1983b, IgE-mediated release of leukotriene C4, chondroitin sulfate E proteoglycan, (3-hexosaminidase and histamine from cultured bone marrow-derived mouse mast cells, J. Exp. Med. 157:189–201.Google Scholar
  82. Ribbes, G., Ninio, E., Fontan, P., Record, M., Chap, H., Benveniste, J., Douste-Blazy, L., 1985, Evidence that biosynthesis of platelet-activating factor (PAF-acether) by human neutrophils occurs in intracellular membranes, FEBS Lett. 191:195–200.PubMedCrossRefGoogle Scholar
  83. Robin, J. L., Seldin, D. C., Austen, K. F., and Lewis, R. A., 1985, Regulation of mediator release from mouse bone marrow-derived mast cells by glucocorticosteroids, J. Immunol. 135:2719–2726.PubMedGoogle Scholar
  84. Rola-Pleszczynski, M., Gagnon, M., Rudzinska, P., Borgeat, P., and Sirois, P., 1984, Human nature cytotoxic cell activity: Enhancement by leukotrienes (LT) A4, B4 and D4 but not by stereoisomers of LTB4 and HETEs, Prostaglandins Leukotrienes Med. 13:113–116.CrossRefGoogle Scholar
  85. Roubin, R., Tencé, M., Mencia-Huerta, J. M., Arnoux, B., Ninio, E., and Benveniste, J., 1983, A chemically defined monokine, Macrophage-derived platelet-activating factor, in: Lymphokines, Volume 8 (E. Pick, ed.), Academic Press, New York, pp. 249–276.Google Scholar
  86. Rouzer, C. A., Scott, W. A., Hamill, A. L., and Cohn, Z. A., 1980, Dynamics of leukotriene C production by macrophages, J. Exp. Med. 152:1236–1241.PubMedCrossRefGoogle Scholar
  87. Rouzer, C. A., Scott, W. A., Hamill, A. L., Liu, F. T., Katz, D. H., and Cohn, Z. A., 1982, Secretion of leukotriene C and other arachidonic acid metabolites by macrophages challenged with immunoglobulin E immune complexes, J. Exp. Med. 156:1077–1086.PubMedCrossRefGoogle Scholar
  88. Samuelsson, B., 1983, The leukotrienes, Science 20:568–575.CrossRefGoogle Scholar
  89. Schleimer, R. P., Lichtenstein, L. M., and Gillespie, E., 1981, Inhibition of basophil histamine release by anti-inflammatory steroids, Nature 292:454–455.PubMedCrossRefGoogle Scholar
  90. Schleimer, R. P., Mac Glassan, D. W., Gillespie, E., and Lichtenstein, L. M., 1982, Inhibition of basophil histamine release by anti-inflammatory steroids. II. Studies on the mechanism of action, J. Immunol. 129:1632–1636.PubMedGoogle Scholar
  91. Schleimer, R. P., Schulman, E. S., Mac Glassan, D. W., Peters, S. P., Hayes, E. C, Adams, G. K., Lichtenstein, L. M., and Adkinson, N. F., 1983, Effects of dexamethasone on mediator release from human lung fragments and purified human lung mast cells, J. Clin Invest. 71:1830–1835.PubMedCrossRefGoogle Scholar
  92. Schrader, J. W., Lewis, S. J., Clark-Lewis, I., and Culvenor, J. G., 1981, The persisting (P) cell: Histamine content, regulation by a T cell-derived factor, origin from a bone marrow precursor and relationship to mast cells, Proc. Natl. Acad. Sci. USA 78:323–327.PubMedCrossRefGoogle Scholar
  93. Siraganian, R. P., 1983, Histamine secretion from mast cells and basophils, Trends Pharmacol. Sci. 4:432–437.CrossRefGoogle Scholar
  94. Steinhoff, M. M., Lee, L. H., and Jakschik, B. A., 1980, Enzymatic formation of prostaglandin D2 by rat basophilic leukemia cells and normal rat mast cells, Biochim. Biophys. Acta 618:28–34.PubMedGoogle Scholar
  95. Tencé, M., Coeffier, E., Heymans, F., Polonsky, J., Godfroid, J. J., and Benveniste, J., 1981, Structural analogs of platelet-activating factor (PAF-acether), Biochimie 63:723–727.PubMedCrossRefGoogle Scholar
  96. Tertian, G., Yung, Y.-P., Guy-Grand, D., and Moore, M. A. S., 1981, Long term in vitro culture of murine mast cells: Description of a growth factor-dependent culture technique, J. Immunol. 127:788–794.PubMedGoogle Scholar
  97. Webb, D. R., Nowowiejski, I., Healy, C., and Rogers, T. J., 1982, Immunosuppressive properties of leukotrienes D4 and E4 in vitro, Biochim. Biophys. Res. Commun. 104:1617–1622.CrossRefGoogle Scholar
  98. White, J. R., Ishizaka, T., Ishizaka, K., and Sha’afi, R. I., 1984, Direct demonstration of increased intracellular concentration of free calcium as measured by quin-2 in stimulated rat peritoneal mast cells, Proc. Natl. Acad. Sci. USA 81:3978–3982.PubMedCrossRefGoogle Scholar
  99. White, J. R., Pluznik, D., Ishizaka, K., and Ishizaka, T., 1985, Antigen-induced increase in protein kinase C activity in plasma membrane of mast cells, Proc. Natl. Acad. Sci. USA 82:8193–8197.PubMedCrossRefGoogle Scholar
  100. Williams, J. D., Czop, J. K., and Austen, K. F., 1984, Release of leukotrienes by human monocytes on stimulation of their phagocytic receptor for particulate activators, J. Immunol. 132:3034–3040.PubMedGoogle Scholar
  101. Wilson, J. G., Fearon, D. T., Stevens, R. L., Seno, N., and Austen. K. F., 1984, Inhibition of the function of activated properdin by squid chondroitin sulfate E glycosaminoglycan and murine bone marrow-derived mast cell chondroitin sulfate E proteoglycan, J. Immunol. 132:3058–3063.PubMedGoogle Scholar
  102. Wykle, R. L., Malone, B., and Snyder, F., 1980, Enzymatic synthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine, A hypotensive and platelet-aggregating lipid, J. Biol. Chem. 255:10256–10260.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jean Michel Mencia-Huerta
    • 1
  • Ewa Ninio
    • 2
  1. 1.Department of ImmunologyHenri Beaufour InstituteLes UlisFrance
  2. 2.INSERM U200University of South ParisClamartFrance

Personalised recommendations