Functions of PAF in Reproduction and Development: Involvement of PAF in Fetal Lung Maturation and Parturition

  • John M. Johnston
  • John E. Bleasdale
  • Dennis R. Hoffman


The first suggestion that PAF may be involved in the process of reproduction was based on the observation that PAF appeared in human amniotic fluid in association with labor (Billah and Johnston, 1983). Nishihira and colleagues (1984) confirmed these observations and demonstrated that strips of rat myometrium contracted in response to PAF at concentrations similar to those present in amniotic fluid. In addition to the potential role of PAF in parturition, PAF may also be involved in nidation. Recently, O’Neill (1985a,b) suggested that the thrombocytopenia associated with early pregnancy in the mouse may be related to the production of PAF by the fertilized egg. Furthermore, Angle et al. (1985) reported that on the 6th day of pregnancy in the rabbit, the amount of PAF in the endometrium is ten times greater than that in endometrium of nonpregnant rabbits. These observations are suggestive that PAF may be involved in the changes in vascular permeability that are essential for nidation. Thus, it appears that PAF may participate in the various stages of reproduction ranging from implantation of the fertilized egg to the initiation of parturition.


Amniotic Fluid Fetal Lung Lamellar Body Fetal Membrane Fetal Kidney 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amoroso, E. C., and Perry, J. S., 1975, The existence during gestation of an immunological buffer zone at the interface between maternal and foetal tissues, Philos. Trans. R. Soc. London B 271:343–361.CrossRefGoogle Scholar
  2. Angle, M. J., Jones, M. A., Pinckard, R. N., McManus, L. M., and Harper, M. J. K., 1985, Platelet activating-factor (PAF) in the rabbit uterus during early pregnancy, Biol. Reprod. (Suppl. 1) 32:143.Google Scholar
  3. Ban, C, Billah, M. M., Truong, C. T., and Johnston, J. M., 1986, Metabolism of platelet-activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in human fetal membranes and decidua vera, Arch. Biochem. Biophys. 246:9–18.PubMedCrossRefGoogle Scholar
  4. Benveniste, J., Henson, P. M., and Cochrane, C. G., 1972, Leukocyte-dependent histamine release from rabbit platelets. The role of IgE basophils and platelet-activating factor, J. Exp. Med. 136:1356–1377.PubMedCrossRefGoogle Scholar
  5. Bergstrom, S., and Sjövall, J., 1960a, The isolation of prostaglandin F from sheep prostate glands, Acta Chem. Scand. 14:1693–1701.CrossRefGoogle Scholar
  6. Bergstrom, S., and Sjövall, J., 1960b, The isolation of prostaglandin E from sheep prostate glands, Acta Chem. Scand. 14:1701–1705.CrossRefGoogle Scholar
  7. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:315–321.PubMedCrossRefGoogle Scholar
  8. Billah, M. M., and Johnston, J. M., 1983, Identification of phospholipid platelet-activating factor (1 -O- alkyl-2-acetyl-sn-glycero-3-phosphocholine) in human amniotic fluid and urine, Biochem. Biophys. Res. Commun. 113:51–58.PubMedCrossRefGoogle Scholar
  9. Billah, M. M., and Lapetina, E. G., 1983, Platelet-activating factor stimulates metabolism of phos phoinositides in horse platelets: Possible relationship to Ca2+ mobilization during stimulation, Proc. Natl. Acad. Sci. USA 80:965–968.PubMedCrossRefGoogle Scholar
  10. Billah, M. M., Di Renzo, G. C., Ban, C., Truong, C. T., Hoffman, D. R., Anceschi, M. M., Bleasdale, J. E., and Johnston, J. M., 1985, Platelet-activating factor metabolism in human amnion and the responses of this tissue to extracellular platelet-activating factor, Prostaglandins 30:841– 850.PubMedCrossRefGoogle Scholar
  11. Blank, M. L., Hall, M. N., Cress, E. A., and Snyder, F., 1983, Inactivation of l-alkyl-2-acetyl-sn glycero-3-phosphocholine by a plasma acetylhydrolase: Higher activities in hypertensive rats, Biochem. Biophys. Res. Commun. 113:666–671.PubMedCrossRefGoogle Scholar
  12. Bleasdale, J. E., and Johnston, J. M., 1984, Prostaglandins and human parturition: Regulation of arachidonic acid mobilization, in: Reviews in Perinatal Medicine ,Volume 5, Alan R. Liss, New York, pp. 151–191.Google Scholar
  13. Bleasdale, J. E., and Johnston, J. M., 1985, Developmental biochemistry of lung surfactant, in: Pulmonary Development. Transition from Intrauterine to Extrauterine Life (G. H. Nelson, ed.), Marcel Dekker, New York, pp. 47–73.Google Scholar
  14. Bourbon, J., 1978, Glycogene, glycogene-synthetase et phosphorylase dans le poumon du foetus de rat, J. Physiol. 74:22A.Google Scholar
  15. Bourbon, J. R., Rieutort, M., Engle, M. J., and Farrell, P. M., 1982, Utilization of glycogen for phospholipid synthesis in fetal rat lung, Biochim. Biophys. Acta 712:382–389.PubMedGoogle Scholar
  16. Brandstrup, N., and Kretchmer, N., 1965, The metabolism of glycogen in the lungs of the fetal rabbit, Dev. Biol. 11:202–216.PubMedCrossRefGoogle Scholar
  17. Buxton, D. B., Shukla, S. D., Hanahan, D. J., and Olson, M. S., 1984, Stimulation of hepatic glycogenolysis by acetylglyceryl ether phosphorylcholine, J. Biol. Chem. 259:1468–1471.PubMedGoogle Scholar
  18. Connolly, T. M., Wilson, D. B., Bross, T. E., and Majerus, P. M., 1986, Isolation and characterization of inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C, J. Biol. Chem. 261:122–126.PubMedGoogle Scholar
  19. Di Renzo, G. C., Johnston, J. M., Okazaki, T., Okita, J. R., MacDonald, P. C., and Bleasdale, J. E., 1981, Phosphatidylinositol-specific phospholipase C in fetal membranes and uterine decidua, J. Clin. Invest. 67:847–856.PubMedCrossRefGoogle Scholar
  20. Farr, R. S., Wardlow, M. L., Cox, C. P., Meng, K. E., and Greene, D. E., 1983, Human serum acid-labile factor is an acylhydrolase that inactivates platelet-activating factor, Fed. Proc. 42:3120–3122.PubMedGoogle Scholar
  21. Findlay, S. R., Lichtenstein, L. M., Hanahan, D. J., and Pinckard, R. N., 1981, Contraction of guinea pig ileal smooth muscle of acetyl glyceryl ether phosphorylcholine, Am. J. Physiol. 241 :C 130–C133.Google Scholar
  22. Fisher, R. A., Shukla, S. D., Debuysere, M. S., Hanahan, D. J., and Olson, M. S., 1984, The effect of acetylglyceryl ether phosphorylcholine on glycogenosis and phosphatidylinositol 4,5-bisphos-phate metabolism, J. Biol. Chem. 259:8685–8688.PubMedGoogle Scholar
  23. Hastwell, G. B., 1974, Amniotic fluid thromboplastic activity as an index of fetal maturity: A preliminary report, Aust. NZ J. Obstet. Gynaecol. 14:196–198.CrossRefGoogle Scholar
  24. Heffner, J. E., Shoemaker, S. A.. Canham, E. M., Patel, M., McMurtry, I. F.. Morris, H. G.. and Repine, J. E., 1983, Acetyl glyceryl ether phosphorylcholine-stimulated human platelets cause pulmonary hypertension and edema in isolated rabbit lungs, J. Clin. Invest. 71:351–357.PubMedCrossRefGoogle Scholar
  25. Hertelendy, F., 1972, Prostaglandin-induced premature oviposition in the coturnix quail. Prostaglandins 2:269–279.PubMedCrossRefGoogle Scholar
  26. Hertelendy, F., Yeh, M., and Bielier. H. V., 1974, Induction of oviposition in the domestic hen by prostaglandins. Gen. Comp. Endocrinol. 22:529–531.PubMedCrossRefGoogle Scholar
  27. Hoffman. D. R., Truong, T. C., and Johnston, J. M., 1986a, The role of platelet-activating factor in human fetal lung maturation. Am. J. Obstet. Gynecol. 155:70–75.PubMedGoogle Scholar
  28. Hoffman, D. R.. Truong, T. C., and Johnston, J. M., 1986b, Metabolism and function of platelet-activating factor in rabbit fetal lung development, Biochim. Biophys. Acta. 879:88-96.PubMedGoogle Scholar
  29. Hwang, S. B., Lam. M. H., and Shen, T. Y., 1985, Specific binding sites for platelet activating factor in human lung tissues. Biochem. Biophys. Res. Commun. 128:972–979.CrossRefGoogle Scholar
  30. Jarvis, A. A., Cain, C, and Dennis, E. A., 1984, Purification and characterization of a lysophospho-lipase from human amniotic membranes, J. Biol. Chem. 259:15188–15195.PubMedGoogle Scholar
  31. Karim, S. M. M., 1966, Identification of prostaglandins in human amniotic fluid. J. Obstet. Gynaecol. Br. Commonw. 73:903–908.PubMedCrossRefGoogle Scholar
  32. Karim, S. M. M., and Filshie, G. M., 1970, Therapeutic abortion using prostaglandin F2, Lancet 1:157 159.PubMedGoogle Scholar
  33. Karim, S. M. M., and Filshie, G. M., 1972, The use of prostaglandin E2 for therapeutic abortion, J. Obstet. Gynaecol. Br. Commonw. 79:1–13.PubMedCrossRefGoogle Scholar
  34. Kikkawa, Y., 1975, Morphology and morphologic development of the lung, in: Pulmonary Physiology of the Fetus, Newborn, and Child (E. Scarpelli, ed.), Lea &Febiger, Philadelphia, pp. 37–60.Google Scholar
  35. Kumar, R., King, R. J., and Hanahan, D. J., 1985, Occurrence of glyceryl ethers in the phosphatidylcholine fraction of surfactant from dog lungs, Biochim. Biophys. Acta 836:19–26.PubMedGoogle Scholar
  36. Kurzrok, R., and Lieb, C. C., 1930, Biochemical studies of human semen. II. The action of semen on the human uterus, Proc. Soc. Exp. Biol. Med. 28:268–272.Google Scholar
  37. Lands, W. E. M., and Samuelsson, B., 1968, Phospholipid precursors of prostaglandins, Biochim. Biophys. Acta 164:426–429.PubMedGoogle Scholar
  38. Lanman, J. T., Herod, L., and Thau, R., 1972, Premature induction of labor with dilinoleyl lecithin in rabbits, Pediatr. Res. 6:701–704.PubMedGoogle Scholar
  39. Lapetina, E. G., 1982, Platelet-activating factor stimulates the phosphatidylinositol cycle. Appearance of phosphatidic acid is associated with the release of serotonin in horse platelets, J. Biol. Chem. 257:7314–7317.PubMedGoogle Scholar
  40. Lapetina, E. G., and Hawthorne, J. N., 1971, The diglyceride kinase of rat cerebral cortex, Biochem. J. 122:171–179.PubMedGoogle Scholar
  41. Lee, T.-C., Malone, B., Blank, M. L., and Snyder, F., 1981, l-Alkyl-2-acetyl-sn-glycero-3-phos-phocholine (platelet-activating factor) stimulates calcium influx in rabbit platelets, Biochem. Bi ophys. Res. Commun. 102:1262–1268.CrossRefGoogle Scholar
  42. Lenihan, D. G., and Lee, T.-C., 1984, Regulation of platelet activating factor synthesis: Modulation of l-alkyl-2-lyso-srt-glycero-3-phosphocholine: acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes, Biochem. Biophys. Res. Commun. 120:834–839.PubMedCrossRefGoogle Scholar
  43. Lewis, J. C, O’Flaherty, J. T., McCall, C. E., Wykle, R. L. and Bond, M. E., 1983, Platelet-activating factor effects on pulmonary ultrastructure in rabbits, Exp. Mol. Pathol. 38:100–108.PubMedCrossRefGoogle Scholar
  44. Luukkainen, T. U., and Csapo, A. I., 1963, Induction of premature labor in the rabbit after pretreatment with phospholipids, Fertil. Steril. 14:65–72.PubMedGoogle Scholar
  45. MacDonald, P. C., Schultz, F. M., Duenhoelter, J. H., Gant, N. F., Jimenez, J. M., Pritchard, J. A., Porter, J. C., and Johnston, J. M., 1974, Initiation of human parturition. I. Mechanism of action of arachidonic acid, Obstet. Gynecol. 44:629–636.PubMedGoogle Scholar
  46. MacDonald, P. C., Porter, J. C., Schwarz, B. E., and Johnston, J. M., 1978, Initiation of parturition in the human female, Semin. Perinatol. 2:273–286.PubMedGoogle Scholar
  47. Majerus, P. M., Prescott, S. M., Hofmann, S. L., Neufeld, E. J., and Wilson, D. B., 1983, Uptake and release of arachidonate by platelets, Adv. Prostaglandin Thromboxane Leukotriene Res. 11:45–52.Google Scholar
  48. Maniscalco, W. M., Wilson, C. M., Gross, I., Cobran, L. S. A., Rooney, S. A., and Warshaw, J. B., 1978, Development of glycogen and phospholipid metabolism in fetal and newborn rat lung, Biochim. Biophys. Acta 530:333–346.PubMedGoogle Scholar
  49. Mitchell, M. D., Strickland, D. M., Brennecke, S. P., and Saeed, S. A., 1983, New aspects of arachidonic acid metabolism in human parturition, in: Ross Conference Initiation of Parturition: Prevention of Prematurity ,Report of Fourth Ross Conference on Obstetrics Research, Ross Laboratories, Columbus, OH, pp. 145–153.Google Scholar
  50. Nathanielsz, P. W., Abel, M., and Smith, G. W., 1973, Hormonal factors in parturition in the rabbit, In: Foetal and Neonatal Physiology (K.S. Comline, K. W. Cross, and G. S. Dawes, eds.), Cambridge University Press, Cambridge, pp. 594–601.Google Scholar
  51. Nishihira, J., Ishibashi, T., Mai, Y., and Muramatsu, T., 1984, Mass spectrometric evidence for the presence of platelet-activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in human amniotic fluid during labor, Lipids 19:907–910.PubMedCrossRefGoogle Scholar
  52. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature 308:693–698.PubMedCrossRefGoogle Scholar
  53. O’Flaherty, J. T., Wykle, R. L., Miller, C. H., Lewis, J. C., Waite, M., Bass, D. A., McCall, C. E., and DeChatelet, L. R., 1981, l-0-Alkyl-sn-glyceryl-3-phosphorylcholines. A novel class of neutrophil stimulants, Am. J. Pathol. 103:70–79.PubMedGoogle Scholar
  54. Ogawa, Y., Herod, L., and Lanman, J. T., 1970, Phospholipids and the onset of labor in rabbits, Gynecol. Invest. 1:240–248.PubMedCrossRefGoogle Scholar
  55. Okazaki, T., Okita, J. R., MacDonald, P. C., and Johnston, J. M., 1978, Initiation of human parturition: X. Substrate specificity of phospholipase A2 in human fetal membranes, Am. J. Obstet. Gynecol. 130:432–438.PubMedGoogle Scholar
  56. Okazaki, T., Sagawa, N., Okita, J. R., Bleasdale, J. E., MacDonald, P. C., and Johnston, J. M., 1981, Diacylglycerol metabolism and arachidonic acid release in human fetal membranes and decidua vera, J. Biol. Chem. 256:7316–7321.PubMedGoogle Scholar
  57. Okazaki, T., Ban, C., and Johnston, J. M., 1984, The identification and characterization of protein kinase C activity in fetal membranes, Arch. Biochem. Biophys. 229:27–32.PubMedCrossRefGoogle Scholar
  58. Okita, J. R., MacDonald, P. C., and Johnston, J. M., 1982a, Mobilization of arachidonic acid from specific glycerophospholipids of human fetal membranes during early labor, J. Biol. Chem. 257:14029–14034.PubMedGoogle Scholar
  59. Okita, J. R., MacDonald, P. C., and Johnston, J. M., 1982b, Initiation of human parturition: XIV. Increase in the diacylglycerol content of amnion during parturition, Am. J. Obstet. Gynecol. 142:432–435.PubMedGoogle Scholar
  60. Olson, D. M., Opavsky, M. A., and Challis, J. R. G., 1983, Prostaglandin synthesis by human amnion is dependent upon extracellular calcium, Can. J. Physiol. Pharmacol. 61:1089–1092.PubMedCrossRefGoogle Scholar
  61. O’Neill, C. O., 1985a, Thrombocytopenia is an initial maternal response to fertilization in mice, J. Reprod. Fertil 73:559–566.PubMedCrossRefGoogle Scholar
  62. O’Neill, C. O., 1985b, Examination of the causes of early pregnancy-associated thrombocytopenia in mice, J. Reprod. Fertil. 73:567-577.PubMedCrossRefGoogle Scholar
  63. Pfleger, R. C., and Thomas, H. G., 1971, Beagle dog pulmonary surfactant lipids, Arch. Intern. Med. 127:863–872.PubMedCrossRefGoogle Scholar
  64. Pinckard, R. N., Halonen, M., Palmer, J. D., Butler, C, Shaw, J. O., and Henson, P. M., 1977, Intravascular aggregation and pulmonary sequestration of platelets during IgE-induced systemic anaphylaxis in the rabbit. Abrogation of lethal anaphylactic shock by platelet depletion, J. Immunol. 119:2185–2193.PubMedGoogle Scholar
  65. Prevost, M. C., Cariven, C., Simon, M. F., Chap, H., and Douste-Blazy, L., 1984, Platelet activating factor (PAF-acether) is released into rat pulmonary alveolar fluid as a consequence of hypoxia, Biochem. Biophys. Res. Commun. 119:58–63.PubMedCrossRefGoogle Scholar
  66. Pritchard, J. A., MacDonald, P. C., and Gant, N. F., 1985, in: Williams Obstetrics ,Appelton-Century Crofts, Norwalk, CT, pp. 415–418.Google Scholar
  67. Redman, C. W. G., Bonnar, J., and Betlin, L., 1978, Early platelet consumption in pre-eclampsia, Br. Med. J. i:467–469.CrossRefGoogle Scholar
  68. Rudolph, A. M., Itskouitz, J., Iwamoto, H., Reuss, M. L., and Heymann, M. A., 1981, Fetal cardiovascular responses to stress, Semin. Perinatol. 5:109–120.PubMedGoogle Scholar
  69. Sagawa, N., Okazaki, T., MacDonald, P. C., and Johnston, J. M., 1982, Regulation of diacylglycerol metabolism and arachidonic acid release in human amniotic tissue, J. Biol. Chem. 257:8158– 8162.PubMedGoogle Scholar
  70. Schwarz, B. E., Schultz, F. M., MacDonald, P. C., and Johnston, J. M., 1975, Initiation of human parturition: III. Fetal membrane content of prostaglandin E2 and F2 precursor, Obstet. Gynecol. 46:564-568.PubMedGoogle Scholar
  71. Shelley, H. J., 1961, Glycogen reserves and their changes at birth and in anoxia, Br. Med. Bull. 17:137– 143.Google Scholar
  72. Shukla, S. D., Buxton, D. B., Olson, M. S., and Hanahan, D. J., 1983, Acetylglyceryl ether phos phorylcholine. A potent activator of hepatic phosphoinositide metabolism and glycogenosis, J. Biol. Chem. 258:10212–10214.PubMedGoogle Scholar
  73. Smith, K. A., Prewitt, R. L., Byers, L. W., and Muirhead, E. E., 1981, Analogs of phosphatidylcholine: -adrenergic antagonists from the renal medulla, Hypertension 3:460–470.PubMedGoogle Scholar
  74. Smith, R. J., and Bowman, B. J , 1982, Stimulation of human neutrophil degranulation with 1-0- octadecyl-2-0-acetyl-sn-glyceryl-3-phosphocholine: Modulation by inhibitors of arachidonic acid metabolism, Biochem. Biophys. Res. Commun. 104:1495–1501.PubMedCrossRefGoogle Scholar
  75. Snyder, F., 1985, Chemical and biochemical aspects of platelet activating factor: A novel class of acetylated ether-linked choline phospholipids, Med. Res. Rev. 5:107–140.PubMedCrossRefGoogle Scholar
  76. Snyder, C., Malone, B., Nettesheim, P., and Snyder, F., 1973, Urethan-induced pulmonary adenoma as a tool for the study of surfactant biosynthesis, Cancer Res. 33:2437–2443.PubMedGoogle Scholar
  77. Snyder, J. M., Johnston, J. M., and Mendelson, C. R., 1981, Differentiation of type II cells in human fetal lung in vitro, Cell Tissue Res. 220:17–25.PubMedCrossRefGoogle Scholar
  78. Snyder, J. M., Mendelson, C. R., and Johnston, J. M., 1985, The morphology of lung development in the human fetus, in: Pulmonary Development. Transition from Intrauterine to Extrauterine Life (G. H. Nelson, ed.), Marcel Dekker, New York, pp. 19–46.Google Scholar
  79. Sorokin, S., Padykula, H. A., and Herman, E., 1959, Comparative histochemical patterns in developing mammalian lungs, Dev. Biol. 1:125–151.CrossRefGoogle Scholar
  80. Spitzer, H. L., Rice, J. M., MacDonald, P. C., and Johnston, J. M., 1975, Phospholipid biosynthesis in lung lamellar bodies, Biochem. Biophys. Res. Commun. 66:17–23.PubMedCrossRefGoogle Scholar
  81. Stimler, N. P., and O’Flaherty, J. T., 1983, Spasmogenic properties of platelet-activating factor: Evidence for a direct mechanism in the contractile response of pulmonary tissues, Am. J. Pathol. 113:75–84.PubMedGoogle Scholar
  82. Stimler, N. P., Bloor, C. M., Hugh, T. E., Wykle, R. L., McCall, C. E., and O’Flaherty, J. T., 1981, Anaphylactic actions of platelet-activating factor, Am. J. Pathol. 105:64–69.PubMedGoogle Scholar
  83. Thorburn, G. D., 1979, Physiology and control of parturition: Reflections on the past ideas for the future, Animal Reprod. Sci. 2:1–27.CrossRefGoogle Scholar
  84. Tokumura, A., Harada, K., Fukuzawa, K., and Tsukatani, H., 1983, Biphasic action of platelet-activating factor on isolated guinea-pig ileum, Lipids 18:848–850.PubMedCrossRefGoogle Scholar
  85. Vargaftig, B. B., Lefort, J., Prancan, A. V., Chignard, M., and Benveniste, J., 1979, Platelet-lung in vivo interactions: An artifact of a multi-purpose model, Haemostasis 8:171–182.PubMedGoogle Scholar
  86. Voelkel, N. F., Worthen, S., Reeves, J. T., Henson, P. M., and Murphy, R. C., 1982, Nonim munological production of leukotrienes induced by platelet-activating factor, Science 218:286–288.PubMedCrossRefGoogle Scholar
  87. Voelkel, N. F., Simpson, J., Worthen, S., Reeves, J. T., Henson, P. M., and Murphy, R. C, 1983, Platelet-activating factor causes pulmonary vasoconstriction and edema via platelet-independent leukotriene formation, Adv. Prostaglandin Thromboxane Leukotriene Res. 12:179–183.Google Scholar
  88. Von Euler, U. S., 1935, Uber die spezifische blut-drucksenkende Substanz des menschlichen Prostata und Smenblasenekretes, Klin. Wochenschr. 14:1182–1183.CrossRefGoogle Scholar
  89. Vonkeman, H., and van Dorp, D. A., 1968, The action of prostaglandin synthetase on 2-arachidonyl lecithin, Biochim. Biophys. Acta 164:430–432.PubMedGoogle Scholar
  90. Whigham, K. A. E., Howie, P. W., Brummond, A. H., and Prentice, C. R. M., 1978, Abnormal platelet function in pre-eclampsia, Br. J. Obstet. Gynaecol. 85:28–32.PubMedCrossRefGoogle Scholar
  91. Williams, M. C., and Mason, R. J., 1977, Development of the type II cell in the fetal rat lung, Am. Rev. Respir. Dis. 115:37–47.PubMedGoogle Scholar
  92. Wolf, R. A., and Gross, R. W., 1985, Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium, J. Biol. Chem. 260:7295–7303.PubMedGoogle Scholar
  93. Woodard, S. D., Lee, T.-C., and Snyder, F., 1984, Biosynthesis of platelet-activating factor via two enzymatic pathways in rat kidney, Fed. Proc. 43:1655.Google Scholar
  94. Worthen, G. S., Goins, A. J., Mitchel, B. C., Larsen, G. L., Reeves, J. R., and Henson, P. M., 1983, Platelet-activating factor causes neutrophil accumulation and edema in rabbit lungs, Chest 83:13S– 15S.PubMedGoogle Scholar
  95. Wykle, R. L., Malone, B., and Snyder, F., 1980, Enzymatic synthesis of l-alkyl-2-acetyl-sn-glycero-3 phosphocholine, a hypotensive and platelet-aggregating lipid, J. Biol. Chem. 255:10256–10260.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • John M. Johnston
    • 1
  • John E. Bleasdale
    • 1
  • Dennis R. Hoffman
    • 1
  1. 1.Departments of Biochemistry and Obstetrics-Gynecology and The Cecil H. and Ida Green Center for Reproductive Biology SciencesThe University of Texas Health Science CenterDallasUSA

Personalised recommendations