Platelet-Activating Factor: A Secretory Product from Phagocytes

  • Mariano Sanchez-Crespo
  • Pedro Iñarrea
  • Julian Gomez-Cambronero


Platelet-activating factor was initially described by Benveniste, Henson, and Cochrane in their 1972 report as a substance released from IgE-stimulated basophils that could trigger the secretory response of rabbit platelets. This fact has been related to the pathogenic events that occur during the deposition of immune complexes in tissues, since rabbit basophils often appear to be sensitized with antibodies of identical specificity to those involved in soluble immune complexes, and this could account for the direct stimulation of these cells during immune complex diseases (Benveniste et al., 1976). According to these views, the generation of PAF-acether from IgE-stimulated basophils could be a crucial event in the induction of increased vascular permeability, which appears essential for extravascular deposition of immune complexes (Benveniste, 1974; Camussi et al., 1982).


Platelet Activate Factor Polymorphonuclear Leukocyte Mononuclear Phagocyte Human Polymorphonuclear Leukocyte Soluble Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, D. H., and Snyder, F., 1983, Biosynthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from l-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages, J. Biol. Chem. 258:97–102.PubMedGoogle Scholar
  2. Alonso, F., Sanchez-Crespo, M., and Mato, J. M., 1982a, Modulatory role of cyclic AMP in the release of platelet-activating factor from human polymorphonuclear leukocytes, Immunology 45:493–500.PubMedGoogle Scholar
  3. Alonso, F., Garcia-Gil, M., Sanchez-Crespo, M., and Mato, J. M., 1982b, Activation of l-alkyl-2-lyso-glycero-3-phosphocholine : acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes, J. Biol. Chem. 257:3376–3378.PubMedGoogle Scholar
  4. Arend, W. P., and Mannik, M., 1971, Studies on antigen-antibody complexes. II. Quantitation of tissue uptake of soluble complexes in normal and complement-depleted rabbits, J. Immunol. 107:63–75.PubMedGoogle Scholar
  5. Arnoux, B., Duval, D., and Benveniste, J., 1980, Release of platelet-activating factor (PAF-acether) from alveolar macrophages by the calcium ionophore A23187 and phagocytosis, Eur. J. Clin. Invest. 10:437–441.PubMedCrossRefGoogle Scholar
  6. Benveniste, J., 1974, Platelet-activating factor, a new mediator of anaphylaxis and immune-complex deposition from rabbit and human basophils, Nature 294:581–582.CrossRefGoogle Scholar
  7. Benveniste, J., Henson, P. M., and Cochrane, C. G., 1972, Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils and a platelet-activating factor, J. Exp. Med. 136:1356–1377.Google Scholar
  8. Benveniste, J., Egido, J., and Gutierrez-Millet, V., 1976, Evidence for the involvement of the IgE-basophil system in acute serum sickness, Clin. Exp. Immunol. 26:449–456.PubMedGoogle Scholar
  9. Benveniste, J., Tence, M., Varenne, P., Bidault, J., Boullet, C., and Polonski, J., 1979, Semi-synthese et structure proposee du facteur activant les plaquettes (PAF); PAF-acether, un alkyl ether analogue de la lysophosphatidylcholine, C.R. Acad. Sci. Ser. D 289:1037–1040.Google Scholar
  10. Bessin, P., Bonnet, J., Apffel, D., Soulard, C., Desgroux, L., and Benveniste, J., 1983a, Acute circulatory collapse caused by platelet-activating factor (PAF-acether) in dogs, Eur. J. Pharmacol. 86:403–413.PubMedCrossRefGoogle Scholar
  11. Bessin, P., Bonnet, J., Thibandeau, D., Agier, B., Beaudet, Y., and Gilet, F., 1983b, Pathophysiology of shock states caused by PAF-acether in dogs and rats, in: Platelet-Activating Factor and Structurally Related Ether Lipids (J. Benveniste and B. A. Arnoux, eds.), Elsevier Science Publishers, Amsterdam, pp. 343–356.Google Scholar
  12. Betz, S. J., Lotner, G. Z., and Henson, P. M., 1980, Generation and release of platelet-activating factor (PAF) from enriched preparations of rabbit basophils; failure of human basophils to release PAF, J. Immunol. 125:2749–2755.PubMedGoogle Scholar
  13. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90:1194–1200.PubMedCrossRefGoogle Scholar
  14. Bockow, B., and Mannik, M., 1981, Clearance and tissue uptake of immune complexes in complement-depleted and control mice, Immunology 42:497–504.PubMedGoogle Scholar
  15. Bussolino, F., and Benveniste, J., 1980, Pharmacological modulation of platelet-activating factor (PAF) release from rabbit leukocytes. I. Role of cyclic AMP, Immunology 40:367–376.PubMedGoogle Scholar
  16. Buxton, D. B., Hanahan, D. J., and Olson, M. L., 1984, Stimulation of glycogenosis and platelet-activating factor production by heat aggregated immunoglobulin G in the perfused liver, J. Biol. Chem. 259:13758–13761.PubMedGoogle Scholar
  17. Camussi, G., Mencia-Huerta, J. M., and Benveniste, J., 1977, Release of platelet-activating factor and histamine. I. Effect of immune complexes, complement and neutrophils in human and rabbit mastocytes and basophils, Immunology 33:523–534.PubMedGoogle Scholar
  18. Camussi, G., Agglieta, M., Coda, R., Bussolino, F., Piacibello, W., and Tetta, C., 1981a, Release of platelet activating factor (PAF) and histamine. II. The cellular origin of human PAF: Monocytes, polymorphonuclear neutrophils and basophils, Immunology 42:191–199.Google Scholar
  19. Camussi, G., Tetta, C., Bussolino, F., Caligaris Cappio, F., Coda, R., Masera, C., and Segoloni, G., 1981b, Mediators of immune-complex-induced aggregation of polymorphonuclear neutrophils. II. Platelet-activating factor as the effector substance of immune-induced aggregation, Int. Arch. Allergy Appl. Immunol. 64:25–41.PubMedCrossRefGoogle Scholar
  20. Camussi, G., Tetta, C., Segoloni, G., Deregibus, M. C., and Bussolino, F., 1981c, Neutropenia induced by platelet-activating factor (PAF) released from neutrophils: The inhibitory effect of prostacyclin (PGI2), Agents Actions 11:550–553.PubMedCrossRefGoogle Scholar
  21. Camussi, G., Tetta, C., DeRegibus, M. C., Bussolino, F., Segoloni, G., and Vercellone, A., 1982, Platelet-activating factor (PAF) in experimentally-induced rabbit acute serum sickness: Role of basophil-derived PAF in immune complex deposition, J. Immunol. 128:86–94.PubMedGoogle Scholar
  22. Camussi, G., Aglietta, M., Malavasi, F., Tetta, C., Piacibello, W., and Bussolino, F., 1983a, The release of platelet-activating factor from human endothelial cells in culture, J. Immunol. 131:2397–2403.PubMedGoogle Scholar
  23. Camussi, G., Bussolino, F., Tetta, C., Piacibello, W., and Aglietta, M., 1983b, Biosynthesis and release of platelet-activating factor from human monocytes, Int. Arch. Allergy Appl. Immunol. 70:245–251.PubMedCrossRefGoogle Scholar
  24. Davies, P. J. A., Davies, D. R., Levitzki, A., Maxfield, F. R., Milhaud, P., Willinghan, M. C., and Pastan, I. M., 1980, Transglutaminase is essential in receptor-mediated endocytosis of 2-mac-roglobulin and polypeptide hormones, Nature 283:162–167.PubMedCrossRefGoogle Scholar
  25. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor. Evidence for l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355–9358.PubMedGoogle Scholar
  26. Doebber, T. W., Wu, M. S., and Shen, T. Y., 1984, Platelet-activating factor intravenous infusion in rats stimulates vascular lysosomal hydrolase secretion independent of blood neutrophils, Biochem. Biophys. Res. Commun. 125:980–987.PubMedCrossRefGoogle Scholar
  27. Doebber, T. W., Wu, M. S., Robbins, J. C., Choy, B., Chang, M. N., and Shen, T. Y., 1985, Platelet-activating factor involvement in endotoxin-induced hypotension in rats: Studies with PAF-receptor antagonist kadsurenone, Biochem. Biophys. Res. Commun. 127:799–808.PubMedCrossRefGoogle Scholar
  28. Egido, J., Sancho, J., Rivera, F., and Sanchez, M.. 1982, Handling of soluble IgA aggregates by the mononuclear phagocytic system in mice. A comparison with IgG aggregates, Immunology 46:1–7PubMedGoogle Scholar
  29. Etienne, A., Hecquet, F., Soulard, C., Spinnewyn, B., Clostre, F., and Braquet, P., 1985, In vivo inhibition of plasma protein leakage and Salmonella enteriditis-induced mortality in the rat by a specific PAF-acether antagonist: BN 52021, Agents Actions 17:368–370.CrossRefGoogle Scholar
  30. Garcia-Gil, M., Alonso, F., Sanchez, M., and Mato, J. M., 1981, Inhibition of phospholipid methyltransferase during zymosan-induced secretion of platelet-activating factor in human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 101:740–748.CrossRefGoogle Scholar
  31. Garcia-Gil, M., Alonso, F., Alvarez, V., Sanchez, M., and Mato, J. M., 1982, Phospholipid turnover during phagocytosis in human polymorphonuclear leukocytes, Biochem. J. 206:67–73.PubMedGoogle Scholar
  32. Garcia-Gil, M., and Sanchez, M., 1983, Dansylcadaverine and rimantadine inhibition of phagocytosis, PAF-acether release and phosphatidylcholine synthesis in human polymorphonuclear leukocytes, Immunopharmacology 6:317–325.PubMedCrossRefGoogle Scholar
  33. Goetzl, E. J., Derian, C. K., Tauber, A. I., and Valone, F. H., 1980, Novel effects of l-O-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine mediators in human leukocyte function: Delineation of the specific roles of the acyl substituents, Biochem. Biophys. Res. Commun. 94:881–888.PubMedCrossRefGoogle Scholar
  34. Goldstein, I. M., Roos, D., Kaplan, H. B., and Weissman, G., 1975, Complement and immunoglobulins stimulate superoxide production by human leukocytes independently of phagocytosis, J. Clin. Invest. 56:1155–1163.PubMedCrossRefGoogle Scholar
  35. Gomez-Cambronero, J., Inarrea, P., Alonso, F., and Sanchez-Crespo, M., 1984, The role of calcium ions in the process of acetyltransferase activation during the synthesis of platelet-activating factor, Biochem. J. ,219:419–424.PubMedGoogle Scholar
  36. Gomez-Cambronero, J., Nieto, M., Mato, J. M., and Sanchez-Crespo, M., 1985a, Modulation of acetyltransferase activity in rat splenic microsomes. II. The role of calcium ions, Biochim. Biophys. Acta 845:511–516.PubMedCrossRefGoogle Scholar
  37. Gomez-Cambronero, J., Nieto, M., Velasco, S., Mato, J. M., and Sanchez-Crespo, M., 1985b, Regulation by calcium ions and cyclic AMP of lyso-platelet-activating factor : acetyltransferase from rat splenic microsomes, in: Advances in Inflammation Research ,Raven Press, New York.Google Scholar
  38. Gomez-Cambronero, J., Velasco, S., Mato, J. M., and Sanchez-Crespo, M.. 1985c, Modulation of acetyltransferase activity in rat splenic microsomes. I. The role of catalytic subunit of cyclic AMP-dependent protein kinase, Biochim. Biophys. Acta 845:516–519.PubMedCrossRefGoogle Scholar
  39. Halonen, M., Palmer, J. D., Lohman, I. C., McManus, L. M., and Pinckard, R. N., 1980, Respiratory and circulatory alterations induced by acetyl glyceryl ether phosphorylcholine (AGEPC), a mediator of IgE anaphylaxis in the rabbit, Am Rev. Respir. Dis. 122:915–924.PubMedGoogle Scholar
  40. Handley, D. A., Arbeeny, C. M., Lee, M. L., Van Valen, R. G., and Saunders, R. N., 1984a, Effect of platelet-activating factor on endothelial permeability to plasma macromolecules, Immunophar macology 8:137–142.Google Scholar
  41. Handley, D. A., Van Valen, R. G., Melden, M. K., and Saunders, R. N., 1984b, Evaluation of dose and route effects of platelet-activating factor-induced extravasation in the guinea pig, Thromb. Haemost. 52:34–36.PubMedGoogle Scholar
  42. Henson, P. M., 1971, The immunologic release of constituents from neutrophil leukocytes. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles, J. Immunol. 107:1535–1546.PubMedGoogle Scholar
  43. Henson, P. M., and Oades, Z. G., 1975, Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. Secretion of granule constituents and increased oxidation of glucose, J. Clin. Invest. 56:1503–1061.CrossRefGoogle Scholar
  44. Hirata, F., Corcoran, B. A., Venkatasubramanian, K., Schiffmann, E., and Axelrod, J., 1979, Chem oattractants stimulate degradation of methylated phospholipids and release arachidonic acid in rabbit leukocytes, Proc. Natl. Acad. Sci. USA 76:2640–2648.PubMedCrossRefGoogle Scholar
  45. Humphrey, D. M., Hanahan, D. J., and Pinckard, R. N., 1982a, Induction of leukocytic infiltrates in rabbit skin by acetyl glyceryl ether phosphorylcholine, Lab. Invest. 47:227–234.PubMedGoogle Scholar
  46. Humphrey, D. H., McManus, L. M., Satouchi, K., Hanahan, D. J., and Pinckard, R. N., 1982b, Vasoactive properties of acetyl glyceryl ether phosphorylcholine and analogues, Lab. Invest. 46:422–427.PubMedGoogle Scholar
  47. Inarrea, P., Alonso, F., and Sanchez-Crespo, M., 1983, Platelet-activating factor: An effector substance of the vasopermeability changes induced by the infusion of immune aggregates in the mouse, Immunopharmacology 6:7–14.PubMedCrossRefGoogle Scholar
  48. Inarrea, P., Gomez-Cambronero, J., Nieto, M., and Sanchez-Crespo, M., 1984, Characteristics of the binding of platelet-activating factor to platelets of different animal species, Eur. J. Pharmacol. 105:309–315.PubMedCrossRefGoogle Scholar
  49. Inarrea, P., Gomez-Cambronero, J., Pascual, J., Ponte, M. C., Hernando, L., and Sanchez-Crespo, M., 1985, Synthesis of PAF-acether and blood volume changes in Gram-negative sepsis, Immunopharmacology 9:45–52.PubMedCrossRefGoogle Scholar
  50. Ishizaka, T., Hirata, F., Ishizaka, K., and Axelrod, J., 1980, Stimulation of phospholipid methylation, Ca2+ influx and histamine release by bridging of IgE receptors on rat mast cells, Proc. Natl. Acad. Sci. USA 77:1903–1906.PubMedCrossRefGoogle Scholar
  51. Jouvin-Marche, E., Ninio, E., Beaurain, G., Tence, M., Niaudet, P., and Benveniste, J., 1984, Biosynthesis of PAF-acether (platelet-activating factor). Precursors of PAF-acether and acetyltrans ferase activity in human leukocytes, J. Immunol. 133:892–898.PubMedGoogle Scholar
  52. Lamers, J. L., De Groot, E. R., and Roos, D., 1981, Phagocytosis and degradation of DNA-anti-DNA complexes by human phagocytes. I. Assay conditions, quantitative aspects and differences between human blood monocytes and neutrophils, Eur. J. Immunol. 11:757–764.PubMedCrossRefGoogle Scholar
  53. Lenihan, D. J., and Lee, T.-C, 1984, Regulation of platelet-activating factor synthesis: Modulation of l-alkyl-2-lyso-sn-glycero-3-phosphocholine : acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat splenic microsomes, Biochem. Biophys. Res. Commun. 120:834–839.PubMedCrossRefGoogle Scholar
  54. Lee, T.-C., Lenihan, D. J., Malone, B., Roddy, L. L., and Wasserman, S. I., 1982, Activities of enzymes that metabolize platelet-activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in neutrophils and eosinophils from humans and the effect of a calcium ionophore, Biochem. Biophys. Res. Commun. 105:1303–1308.PubMedCrossRefGoogle Scholar
  55. Lotner, G. Z., Lynch, J. M., Betz, S. J., and Henson, P. M., 1980, Human neutrophils derived platelet-activating factor, J. Immunol. 124:676–684.PubMedGoogle Scholar
  56. Lynch, J. M., Lotner, G. Z., Betz, S. J., and Henson, P. M., 1979, The release of a platelet-activating factor by stimulated rabbit neutrophils, J. Immunol. 123:1219–1226.PubMedGoogle Scholar
  57. Mannik, M., and Arend, W. P., 1971, Fate of preformed immunocomplexes in rabbits and rhesus monkeys, J. Exp. Med. 134:19S–31S.PubMedGoogle Scholar
  58. Mato, J. M., Pencer, D., Vasanthakumar, G., Schiffmann, E., and Pastan, I. M., 1983, Inhibitors of endocytosis perturb phospholipid metabolism in rabbit neutrophils and other cells, Proc. Natl. Acad. Sci. USA 80:1929–1932.PubMedCrossRefGoogle Scholar
  59. McManus, L. M., Hanahan, D. J., Demopoulos, C. A., and Pinckard, R. N., 1980, Pathobiology of the intravenous infusion of acetyl glyceryl ether phosphorylcholine (AGEPC), a synthetic platelet-activating factor (PAF) in the rabbit, J. Immunol. 124:2919–2924.PubMedGoogle Scholar
  60. McManus, L. M., Pinckard, R. N., Fitzpatrick, F. A., O’Rourke, R. A., Crawford, M. H., and Hanahan, D. J., 1981, Acetyl glyceryl ether phosphorylcholine. Intravascular alterations following intravenous infusion in the baboon. Lab. Invest. 45:303–307.PubMedGoogle Scholar
  61. Mencia-Huerta, J. M.. and Benveniste. J., 1979, Platelet-activating factor and macrophages. I. Evidence for the release from rat and mouse macrophages and not from mastocytes, Eur. J. Immunol. 9:409–415.PubMedCrossRefGoogle Scholar
  62. Mencia-Huerta. J. M., and Benveniste, J.. 1981, Platelet-activating factor and macrophages. II. Phagocytosis associated release of PAF-acether from rat peritoneal macrophages. Cell Immunol. 57:281–292.PubMedCrossRefGoogle Scholar
  63. Movat, H. Z.. Uriuhara, T., Tachman, N. S., Tousell, H. C., and Mustard, J. F., 1968, The role of PMN-leukocyte lysosomes in tissue injury, inflammation and hypersensitivity. IV. The participation of the PMN-leukocyte and the blood platelet in systemic aggregate anaphylaxis, Immunology 14:637–648.PubMedGoogle Scholar
  64. Namm, D. H., Tadepalli, A. S., and High, J. A., 1982, Species specificity of the platelet responses to l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine, Thromb. Res. 25:341–350.PubMedCrossRefGoogle Scholar
  65. Newman, S. L., and Johnston, R. B., Jr., 1979, Role of binding through C3b and IgG in polymorphonuclear neutrophil function: Studies with trypsin generated C3b. J. Immunol. 123:1839–1846.PubMedGoogle Scholar
  66. Ninio, E., Mencia-Huerta, J. M., and Benveniste, J., 1983, Biosynthesis of platelet-activating factor (PAF-acether). V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187, Biochem. Biophys. Res. Commun. 751:298–304.Google Scholar
  67. Ninio, E., Mencia-Huerta, J. M., Heymans, F., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor. I. Evidence for an acetyltransferase activity in murine macrophages, Biochim. Biophys. Acta 710:23–31.PubMedGoogle Scholar
  68. Nunez, D., Chignard, M., Korth, R., LeCouedic, J. P., Norel, X., Spinnewyn, B., Braquet, P., and Benveniste, J., 1986, Specific inhibition of PAF-acether-induced platelet activation by BN 52021 and comparison with the PAF-acether inhibitors kadsurenone and CV-3988, Eur. J. Pharmacol. 123:197–205.PubMedCrossRefGoogle Scholar
  69. O’Flaherty, J. T., Wykle, R. L., Lee, C. J., Shewmake,T., McCall, C. E., and Thomas, M. J., 1981. Neutrophil-degranulating action of 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid and 1-O-acetyl-sn-glycero-3-phosphocholine. Comparison with other degranulating agents. Am. J. Pathol. 150:264–269.Google Scholar
  70. O’Flaherty, J. T., Wykle, R. L., Miller, C. H., Lewis, J. C., Waite, M., Bass, D. A., McCall, C. E., and DeChatelet, L. R., 1981, l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine: A novel class of neutrophil stimulants, Am. J. Pathol. 103:70–78.PubMedGoogle Scholar
  71. Pinckard, R. N., Farr, R. S., and Hanahan, D. J., 1979, Physicochemical and functional identity of platelet-activating factor (PAF) released in vivo during IgE anaphylaxis with PAF released in vitro from IgE sensitized basophils, J. Immunol. 123:1847–1857.PubMedGoogle Scholar
  72. Pirotzky. E., Page. C. P., Roubin, R., Pfister, A., Paul, W., and Benveniste, J., 1984, PAF-acether-induced plasma exudation is independent of platelets and neutrophils in rat skin. Microcirculation 1:107–122.Google Scholar
  73. Pryzwansky, K. B., Steiner, A. L., Spitnagel, J. K., and Kapoor, C. L., 1981, Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes. Science 211:407–409.PubMedCrossRefGoogle Scholar
  74. Renooij, W., and Snyder, F., 1981, Biosynthesis of l-alkyl-2-acetyl-5tf-glycero-3-phosphocholine (platelet-activating factor and a hypotensive lipid) by cholinephosphotransferase in various rattissues, Biochim. Biophys. Acta 663:545–556.PubMedGoogle Scholar
  75. Sanchez-Crespo, M., Alonso, F., and Egido, J., 1980, Platelet-activating factor in anaphylaxis and phagocytosis. I. Release from human peripheral polymorphonuclears and monocytes during the stimulation by ionophore A23187 and phagocytosis but not from degranulating basophils, Immunology 40:645–655.PubMedGoogle Scholar
  76. Sanchez-Crespo, M., Alonso, F., Inarrea, P., Alvarez, V., and Egido, J., 1982, Vascular actions of synthetic PAF-acether (a synthetic platelet-activating factor) in the rat: Evidence for a platelet-independent mechanism, Immunopharmacology 4:173–185.PubMedCrossRefGoogle Scholar
  77. Sanchez-Crespo, M., Alonso, F., Inarrea, P., and Egido, J., 1981, Non-platelet-mediated vascular actions of l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine (a synthethic PAF), Agents Actions 11:565–566.PubMedCrossRefGoogle Scholar
  78. Sanchez-Crespo, M., Alonso, F., and Mato, J. M., 1983, Role of an acetyltransferase reaction in the biosynthesis of PAF-acether in human polymorphonuclear leukocytes, in: Platelet-Activating Factor and Structurally Related Ether Lipids (J. Benveniste and B. A. Arnoux, eds.), Elsevier Science Publishers, Amsterdam, pp. 269–275.Google Scholar
  79. Sanchez-Crespo, M., Fernandez-Gallardo, S., Nieto, M. L., Baranes, J., and Braquet, P., 1985, Inhibition of the vascular actions of immunoglobulin G aggregates by BN 52021, a highly specific antagonist of PAF-acether, Immunopharmacology 10:69–75.Google Scholar
  80. Sancho, J., Rivera, F., Sanchez-Crespo, M., and Egido, J., 1982, The effect of the injection of a synthetic platelet-activating factor (PAF-acether) on the fate of IgG aggregates in mice, Immunology 47:643–650.PubMedGoogle Scholar
  81. Scribner, D. J., and Fahrney, D., 1976, Neutrophil receptors for IgG and complement: Their roles in the attachment and ingestion phases of phagocytosis, J. Immunol. 116:892–897.PubMedGoogle Scholar
  82. Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Hanahan, D. J., 1981, Activation of human neutrophils with l-0-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet-activating factor), J. Immunol. 124:1482–1489.Google Scholar
  83. Shen, T. Y., Hwang, S. B., Chang, M. N., Doebber, T. W., Lam, T. M. H., Wu., M. S., Wang, X., Han, G. Q., and Li, R. Z., 1985, Characterization of platelet-activating factor receptor antagonist isolated from haifenteng (Piper futokadsura): Specific inhibition of in vitro and in vivo platelet-activating factor-induced effects, Proc. Natl. Acad. Sci. USA 82:672–676.PubMedCrossRefGoogle Scholar
  84. Simekowitz, L., Fishbein, L. C., Spilberg, I., and Atkinson, J. P., 1980, Induction of a transient elevation in intracellular levels of adenosine 3 : 5 cyclic monophosphate by chemotactic factors: An early event in human neutrophil activation, J. Immunol. 124:1482–1489.Google Scholar
  85. Schlegel, R., Dickson, R. B., Willingham, M. C., and Pastan, I. M., 1982, Amantadine and dan-sylcadaverine inhibit vesicular stomatitis virus uptake and receptor mediated endocytosis of 2-macroglobulin, Proc. Natl. Acad. Sci. USA 79:2291–2295.PubMedCrossRefGoogle Scholar
  86. Smolen, J. E., and Weissmann, G., 1981, Stimuli which provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3–5 monophosphate, Biochim. Biophys. Acta 62:197–206.CrossRefGoogle Scholar
  87. Terashita, Z. I., Imura, Y., Nishikawa, K., and Sumida, S., 1985, Is platelet-activating factor (PAF) a mediator of endotoxin shock? Eur. J. Pharmacol. 109:173–175.CrossRefGoogle Scholar
  88. Valone, F. H., and Goetzl, E. J., 1983, Enhancement of human polymorphonuclear leukocyte adherence by the phospholipid mediator l-0-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine (AGEPC), Am. J. Pathol. 113:85–89.PubMedGoogle Scholar
  89. Virella, G., Lopes-Virella, M. F. L., Shuler, C., Sherwood, T., Espinoza, G. A., Winocour, P., and Cowell, J. A., 1983, Release of PAF by human polymorphonuclear leukocytes stimulated by immune complexes bound to Sepharose particles and human erythrocytes, Immunology 50:43–51.PubMedGoogle Scholar
  90. Wedmore, C. V., and Williams, T. J., 1981a, Platelet-activating factor (PAF), a secretory product of polymorphonuclear leukocytes, increases vascular permeability in rabbit skin, Br. J. Pharmacol. 74:916P-917P.Google Scholar
  91. Wedmore, C. V., and Williams, T. J., 1981b, The control of vascular permeability by polymorphonuclear leukocytes in inflammation, Nature 289:646–650.PubMedCrossRefGoogle Scholar
  92. Weissmann, G., Smolen, J. E., and Korchak, H. M., 1980, Release of inflammatory mediators from stimulated neutrophils, N. Engl. J. Med. 303:27–34.PubMedCrossRefGoogle Scholar
  93. Wykle, R. L., Malone, B., and Snyder, F., 1980, Enzymatic synthesis of l-alkyl-2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-activating phospholipid, J. Biol. Chem. 255:10256–10260.PubMedGoogle Scholar
  94. Zurier, R. B., Weissmann, G., Hoffstein, S., Kammerman, S., and Tai, H. H., 1974, Mechanisms of lysosomal enzyme release from human leukocytes. II. Effect of cyclic AMP and cyclic GMP, autonomic agonists and agents which affect microtubule function, J. Clin. Invest. 53:297–305.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Mariano Sanchez-Crespo
    • 1
  • Pedro Iñarrea
    • 1
  • Julian Gomez-Cambronero
    • 1
  1. 1.Laboratory of Experimental Nephrology, Institute of Investigational Medicine, CSIC Associated CenterJimenez Diaz FoundationMadridSpain

Personalised recommendations