The Production of Platelet-Activating Factor by Cultured Human Endothelial Cells: Regulation and Function

  • Stephen M. Prescott
  • Guy A. Zimmerman
  • Thomas M. McIntyre


Under usual physiological conditions, the vascular endothelium must present a nonthrombogenic surface to the blood to prevent diffuse thrombosis (reviewed by Gingrich and Hoak, 1979). The mechanism(s) for this characteristic of endothelial cells has not been elucidated and is the subject of intense investigation. However, there are other circumstances in which the rapid, specific attraction of blood cells to the endothelium is essential to maintain vascular integrity and to respond to extra-vascular events. In the first instance, damage to the endothelium must be repaired to prevent hemorrhage and exudation. Clinical observations and studies of organ perfusion in vitro (Gimbrone et al., 1969; Kitchens and Weiss, 1975) have provided compelling evidence that platelets are critical in maintaining vascular integrity under basal conditions. These observations suggest that platelets interact with the endothelial cells continuously in vivo. With respect to the second situation, circulating leukocytes bind to the end othelium (margination) in response to appropriate soluble stimuli (reviewed by Harlan, 1985) and emigrate from the vasculature to sites of inflammation such as infection. The latter response must involve a specific targeting mechanism, which presumably would include the endothelium, to attract leukocytes to the appropriate sites. Accordingly, the recently described production of procoagulant activities [e.g., coagulation factors (Rodgers and Shuman, 1983) and glycoproteins similar to platelet adhesive molecules (Fitzgerald et al., 1985)] and chemotactic factors [e.g., platelet-derived growth factor (DiCorleto and Bowen-Pope, 1983)] by endothelium may be viewed as homeostatic responses.


Endothelial Cell Human Endothelial Cell Calcium Ionophore A23187 Human PMNs Bovine Pulmonary Artery Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baenziger, N. L., Fogerty, F. J., Mertz, L. F., and Chernuta, L. F., 1981, Regulation of histamine mediated prostacyclin synthesis in cultured human vascular endothelial cells. Cell 24:915–923.PubMedCrossRefGoogle Scholar
  2. Blank, M. L., and Snyder, F., 1983, Improved high-performance liquid chromatographic method for isolation of platelet-activating factor from other phospholipids, J. Chromatogr. 273:415–420.PubMedCrossRefGoogle Scholar
  3. Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37:911–917.PubMedCrossRefGoogle Scholar
  4. Bussolino, F., Breviario, F., Tetta, C., Aglietta, M., Mantovani, A., and Dejana, A., 1986, Interleukin 1 stimulates platelet-activating factor production in cultured human endothelial cells, J. Clin. Invest. 77:2027–2033.PubMedCrossRefGoogle Scholar
  5. Camussi, G., Aglietta, M., Malavasi, F., Tetta, C., Piacibello, W., Sanavio, F., and Bussolino, F., 1983a, The release of platelet-activating factor from human endothelial cells in culture, J. Immunol. 131:2397–2403.PubMedGoogle Scholar
  6. Camussi, G., Pawlowski, I., Bussolino, F., Caldwell, P. R. B., Brentjens, J., and Andres, G., 1983b, Release of platelet-activating factor in rabbits with antibody-mediated injury of the lung: The role of leukocytes and of pulmonary endothelial cells, J. Immunol. 131:1802–1807.PubMedGoogle Scholar
  7. Caramello, C., Fernandez-Gallardo, S., Marin-Cao, D., Inarrea, P., Santos, J. C., Lopez-Novoa, J. M., and Sanchez-Crespo, M., 1984, Presence of platelet-activating factor in blood from humans and experimental animals. Its absence in anephric individuals, Biochem. Biophys. Res. Commun. 120:789–796.CrossRefGoogle Scholar
  8. Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L., 1984, l-O-alkyl-2-arachidonoyl-sn glycero-3-phosphocholine: A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259:12014–12019.PubMedGoogle Scholar
  9. Cramer, E. B., Pologe, L., Pawlowski, N. A., Cohn, Z. A., and Scott, W. A., 1983, Leukotriene C promotes prostacyclin synthesis by human endothelial cells, Proc. Natl. Acad. Sci. USA 80:4109– 4113.PubMedCrossRefGoogle Scholar
  10. Czervionke, R. L., Hoak, J. C., and Fry, G. L., 1978, Effect of aspirin on thrombin-induced adherence of platelets to cultured cells from the blood vessel wall, J. Clin. Invest. 62:847–856.PubMedCrossRefGoogle Scholar
  11. DiCorleto, P. E., and Bowen-Pope, D. F., 1983, Cultured endothelial cells produce a platelet-derived growth factor-like protein, Proc. Natl. Acad. Sci. USA 80:1919–1923.PubMedCrossRefGoogle Scholar
  12. Fitzgerald, L. A., Charo, I. F., and Phillips, D. R., 1985, Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins IIb and IIIa, J. Biol. Chem. 260:10893–10896.PubMedGoogle Scholar
  13. Gimbrone, M. A., Aster, R. H., Cotran, R. S., Corkery, J., Jandl, J. H., and Folkman, J., 1969, Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium, Nature 222:33–36.PubMedCrossRefGoogle Scholar
  14. Gingrich, R. D., and Hoak, J. C., 1979, Platelet-endothelial interactions, Semin. Hematol. 16:208–220.PubMedGoogle Scholar
  15. Harlan, J. M., 1985, Leukocyte-endothelial interactions, Blood 65:513–525.PubMedGoogle Scholar
  16. Hayashi, H., Kudo, I., Inoue, K., Nomura, H., and Nojima, S., 1985, Macrophage activation by PAF incorporated into dipalmitoyl-phosphatidylcholine-cholesterol liposomes, J. Biochem. 97:1255– 1258.PubMedGoogle Scholar
  17. Hoover, R. L., Briggs, R. T., and Karnovsky, M. J., 1978, The adhesive interaction between polymorphonuclear leukocytes and endothelial cells in vitro, Cell 14:423–428.PubMedCrossRefGoogle Scholar
  18. Jaffe, E. A., Nachman, R. L., Becker, C. G., and Minick, C. R., 1973, Culture of human endothelial cells derived from umbilical veins: Identification by morphologic and immunologic criteria, J. Clin. Invest. 52:2745–2756.PubMedCrossRefGoogle Scholar
  19. Kitchens, C. S., and Weiss, L., 1975, Ultrastructural changes of endothelium associated with thrombocytopenia, Blood 46:567–578.PubMedGoogle Scholar
  20. Lynch, J. M., Henson, P. M., 1986, The intracellular retention of newly synthesized platelet-activating factor, J. Immunol. 137:2653–2661.PubMedGoogle Scholar
  21. McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M., 1986, Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils, Proc. Natl. Acad. Sci. USA 83:2204–2208.PubMedCrossRefGoogle Scholar
  22. McIntyre, T. M., Zimmerman, G. A., Satoh, K., and Prescott, S. M., 1985, Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and ATP, J. Clin. Invest. 76:271–280.PubMedCrossRefGoogle Scholar
  23. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1983, Biosynthesis of platelet-activating factor in rabbit polymorphonuclear neutrophils, J. Biol. Chem. 258:6213–6218.PubMedGoogle Scholar
  24. O’Flaherty, J. T., Lees, C. J., Miller, C. H., McCall, C. E., Lewis, J. C, Love, S. H., and Wykle, R. L., 1981, Selective desensitization of neutrophils: Further studies with l-0-alkyl-sn-glycero-3 phosphocholine analogues, J. Immunol. 127:731–737.PubMedGoogle Scholar
  25. Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M., 1984, Human endothelial cells in culture produce platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when stimulated with thrombin, Proc. Natl. Acad. Sci. USA 81:3534–3538.PubMedCrossRefGoogle Scholar
  26. Rodgers, G. M., and Shuman, M. A., 1983, Prothrombin is activated on vascular endothelial cells by factors Xa and calcium, Proc. Natl. Acad. Sci. USA 80:7001–7005.PubMedCrossRefGoogle Scholar
  27. Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science 213:830–837.PubMedCrossRefGoogle Scholar
  28. Swendsen, C. L., Ellis, J. M., Chilton, F. H., O’Flaherty, J. T., and Wykle, R. L., 1983, l-O-alkyl-2 acyl-sn-glycero-3-phosphocholine: A novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore A23187, Biochem. Biophys. Res. Commun. 113:72–79.PubMedCrossRefGoogle Scholar
  29. Weksler, B. B., Ley, C. W., and Jaffe, E. A., 1978, Stimulation of endothelial cell prostacyclin production by thrombin, trypsin, and the ionophore A23187, J. Clin. Invest. 62:923–930.PubMedCrossRefGoogle Scholar
  30. Whatley, R. E., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1987, Endothelium from pulmonary and systemic vessels synthesizes platelet-activating factor when stimulated by specific agonists, in press.Google Scholar
  31. Zigmond, S. H., Levitsky, H. I., and Kreel, B. J., 1981, Cell polarity: An examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis, J. Cell Biol. 89:585–592.PubMedCrossRefGoogle Scholar
  32. Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1985a, Human vascular endothelial cells produce platelet-activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine): Evidence for a requirement for specific agonists and modulation by prostacyclin, Circulation 72:718–727.PubMedCrossRefGoogle Scholar
  33. Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1985b, Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro, J. Clin. Invest. 76:2235–2246.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Stephen M. Prescott
    • 1
  • Guy A. Zimmerman
    • 1
  • Thomas M. McIntyre
    • 1
  1. 1.The Nora Eccles Harrison Cardiovascular Research and Training Institute and Department of Internal MedicineUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations