Platelet-Activating Factor: Mechanisms of Cellular Activation

  • Joseph T. O’Flaherty


Platelet-activating factor (PAF) is a phosphatidylcholine containing a long-chain alkyl ether at position 1 and an acetate ester at position 2 (Blank et al., 1979; Demopoulos et al., 1979; Polonsky et al., 1980):
Various cell types form and secrete this product when stimulated. PAF is found in the blood of animals undergoing experimentally induced toxic reactions such as anaphylaxis, serum sickness, and endotoxemia. It can mimic these reactions when injected intravenously into healthy animals. In particular, PAF infusion produces the activation of intravascular leukocytes and platelets, contraction of pulmonary airways, vascular instability, enhanced capillary permeability, and cardiac abnormalities. Deposited locally into tissues, PAF promotes edema and leukocyte accumulation. These results implicate PAF as a mediator of allergic and inflammatory reactions. However, even the most complex, systemic effects of PAF must result from fundamental interactions with target cells. Some understanding of these interactions has been obtained using in vitro studies on tissues containing one or only a few cell types.


Arachidonic Acid Platelet Activate Factor Human Platelet Alkyl Ether Inositol Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avdonin, P. V., Svitina-Ulitina, I. V., and Kulikov, V. I., 1985, Stimulation of high-affinity hormone-sensitive GTPase of human platelets by l-0-alkyl-2-0-acetyl-sn-glyceryl-3-phosphocholine (platelet activating factor), Biochem. Biophys. Res. Commun. 131:307–313.PubMedCrossRefGoogle Scholar
  2. Beaubien, B. B., Tippins, J. R., and Morris, H. R., 1984, Platelet-activating factor stimulation of peptidoleukotriene release: Inhibition by vasoactive polypeptide, Biochem. Biophys. Res. Commun. 125:105–108.PubMedCrossRefGoogle Scholar
  3. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312:317–321.CrossRefGoogle Scholar
  4. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90:1194–1200.PubMedCrossRefGoogle Scholar
  5. Blank, M. L., Cress, E. A., Lee, T.-C., Malone, B., Surles, J. R., Piantadosi, C., Hajdu, J., and Snyder, F., 1982, Structural features of platelet activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) required for hypotensive and platelet serotonin responses, Res. Commun. Chem. Pathol. Pharmacol. 38:3–20.PubMedGoogle Scholar
  6. Camussi, G., Montrucchio, G., Antro, C., Bussolino, F., Tetta, C., and Emanuelli, G., 1983, Platelet-activating factor-mediated contraction of rabbit lung strips: Pharmacologic modulation, Immunopharmacology 6:87–96.PubMedCrossRefGoogle Scholar
  7. Cazenave, J. P., Benveniste, J., and Mustard, J. F., 1979, Aggregation of rabbit platelets by platelet-activating factor is independent of the release reaction and the arachidonate pathway and inhibited by membrane-active drugs, Lab. Invest. 41:275–285.PubMedGoogle Scholar
  8. Chesney, C. M., Pifer, D. D., Byers, L. W., and Muirhead, E. E., 1982, Effect of platelet-activating factor (PAF) on human platelets, Blood 59:582–585.PubMedGoogle Scholar
  9. Chesney, C.M., Pifer, D. D., and Huch, K. M., 1983, Alpha-adrenergic antagonists inhibit binding of platelet-activating factor (PAF) to human gel-filtered platelets, J. Pharmacol. 14:21 (Suppl. 1).Google Scholar
  10. Chesney, C. M., Pifer, D. D., and Huch, K. M., 1985, Desensitization of human platelets by platelet activating factor, Biochem. Biophys. Res. Commun. 127:24–30.PubMedCrossRefGoogle Scholar
  11. Chilton, F. H., O’Flaherty, J. T., Walsh, C. E., Thomas, M. J., Wykle, R. L., DeChatelet, L. R., and Waite, B. M., 1982, Platelet activating factor: Stimulation of the lipoxygenase pathway in polymorphonuclear leukocytes by l-0-alkyl-2-0-acetyl-sn-glycero-3-phosphocholine, J. Biol. Chem. 257:5402–5407.PubMedGoogle Scholar
  12. Dahl, M. L., 1985, Aggregating and prostanoid-releasing effects of platelet-activating factor and leuko-trienes on human polymorphonuclear leukocytes and platelets, Int. Arch. Allergy Appl. Immunol. 76:145–150.PubMedCrossRefGoogle Scholar
  13. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Evidence for l-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254:9355–9358.PubMedGoogle Scholar
  14. Doebber, T. W., Wu, M. S., Robbins, J. C., Choy, B. M., Chang, M. N., and Shen, T. Y., 1985, Platelet activating factor (PAF) involvement in endotoxin-induced hypotension in rats. Studies with PAF-receptor antagonists kadsurenone, Biochem. Biophys. Res. Commun. 127:799–808.PubMedCrossRefGoogle Scholar
  15. Ford-Hutchinson, A. W., 1983, Neutrophil aggregating properties of PAF-acether and leukotriene B4, Int. J. Immunopharmacol. 5:17–21.PubMedCrossRefGoogle Scholar
  16. Gorman, R. R., Morton, D. R., Hopkins, N. K., and Lin, A. H., 1983, Acetyl glyceryl ether phos-phorylcholine stimulates leukotriene B4 synthesis and cyclic AMP accumulation in human polymorphonuclear leukocytes, Adv. Prostaglandin, Thromboxane, Leukotriene Res. 12:57–63.Google Scholar
  17. Hallam, T. J., Rink, T. J., and Sanchez, A., 1983, Elevation of cytoplasmic calcium concentration in human platelets by platelet-activating factor, Br. J. Pharmacol. 79:35IP.Google Scholar
  18. Hartung, H. P., 1983, Acetyl glyceryl ether phosphorylcholine (platelet-activating factor) mediates heightened metabolic activity in macrophages. Studies on PGE, TXB2 and O2 production, spreading, and the influence of calmodulin-inhibitor W-7, FEBS Lett. 160:209–212.PubMedCrossRefGoogle Scholar
  19. Haslam, R. J., and Vanderwell, M., 1982, Inhibition of platelet adenylate cyclase by l-O-alkyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine (platelet-activating factor), J. Biol. Chem. 257:6879–6885.PubMedGoogle Scholar
  20. Heymans, F., Borrel, M. C., Broquet, C., Lefort, J., and Godfroid, J. J., 1985, Structure-activity relationship in PAF-acether. 2. rac-l-0-octadecyl-2-0-acetyl-3-0-[(dimethyl amino)propyl]glyc-erol, J. Med. Chem. 28:1094–1096.PubMedCrossRefGoogle Scholar
  21. Hwang, S. B., Lee, C. S. C., Cheah, M. J., and Shen, T. Y., 1983, Specific receptor sites for l-O-alkyl-2-0-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) on rabbit platelet and guinea pig smooth muscle membranes, Biochemistry 22:4756–4763.PubMedCrossRefGoogle Scholar
  22. Hwang, S. B., Lam, M. H., and Pong, S. S., 1985, Regulation of 3H-PAF binding to its receptors by ions and GTP and PAF-induced activation of GTPase in rabbit platelet membranes, October 15–18, 1985, New Horizons in Platelet Activating Factor Research, Mariner’s Inn, Palmetto Dunes Resort, Hilton Head Island, South Carolina.Google Scholar
  23. Ieyasu, H., Takai, Y., Kaibuchi, K., Sawamura, M., and Nishizuka, Y., 1982, A role of calcium-activated, phospholipid-dependent protein kinase in platelet-activating factor-induced serotonin release from rabbit platelets, Biochem. Biophys. Res. Commun. 108:1701–1708.PubMedCrossRefGoogle Scholar
  24. Ingraham, L. M., Coates, T. D., Allen, J. M., Higgins, C. P., Baehner, R. L., and Boxer, L. A., 1982, Metabolic, membrane, and functional responses of human polymorphonuclear leukocytes to platelet-activating factor, Blood 59:1259–1266.PubMedGoogle Scholar
  25. Irvine, R. F., 1982, How is the level of free arachidonic acid controlled in mammalian cells?, Biochem. J. 204:3–16.PubMedGoogle Scholar
  26. Kawaguchi, H., and Yasuda, H., 1984, Platelet-activating factor stimulates phospholipase in quiescent Swiss mouse 3T3 fibroblast, FEBS Lett. 176:93–96.PubMedCrossRefGoogle Scholar
  27. Kenzora, J. L., Perez, J. E., Bergmann, S. R., and Lange, L. G., 1984, Effects of acetyl glyceryl ether of phosphorylcholine (platelet activating factor) on ventricular preload, afterload, and contractility in dogs, J. Clin. Invest. 74:1193–1203.PubMedCrossRefGoogle Scholar
  28. Khan, S. N., Lane, P. A., and Smith, A. D., 1985, Disaggregation of PAF-acether-aggregated platelets by verapamil and TMB-8 with reversal of phosphorylation of 40K and 20K proteins, Eur. J. Pharmacol. 107:189–198.PubMedCrossRefGoogle Scholar
  29. Kornecki. E., Ehrlich, Y. H., and Lenox, R. H., 1984. Platelet-activating factor-induced aggregation of human platelets specifically inhibited by triazolobenzodiazepines. Science 226:1454–1456.PubMedCrossRefGoogle Scholar
  30. Lad, P. M., Olson. C. V., and Grewal. I. S., 1985a, Platelet activating factor and other mediators of inflammation act through a pertussis toxin sensitive GTP binding protein, October 15–18. New Horizons in Platelet Activating Factor Research, Mariner’s Inn, Palmetto Dunes Resort, Hilton Head Island, South Carolina.Google Scholar
  31. Lad. P. M., Olson. C. V., and Grewal. I. S., 1985b, Platelet-activating factor mediated effects on human neutrophil function are inhibited by pertussis toxin. Biochem. Biophys. Res. Commun. 129:632-638.PubMedCrossRefGoogle Scholar
  32. Lanara, E., Vakirtzi-Lemonias, C., Kritikou, L., and Demopoulos, C. A., 1982, Response of mice and mouse platelets to acetyl glyceryl ether phosphorylcholine. Biochem. Biophys. Res. Commun. 109:1148–1156.PubMedCrossRefGoogle Scholar
  33. Lapetina, E. G., and Siegel, F. L., 1982, Shape change induced in human platelets by platelet-activating factor, J. Biol. Chem. 258:7241–7244.Google Scholar
  34. Lee, T., Malone, B., Blank. M. L., and Snyder, F., 1981, l-alkyl-2-acetyl-sn-glycero-3-phos-phocholine (platelet-activating factor) stimulates calcium influx in rabbit platelets, Biochem. Biophys. Res. Commun. 102:1262-1268.PubMedCrossRefGoogle Scholar
  35. Lee, T., Malone, B., and Snyder, F., 1983, Stimulation of calcium uptake by l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) in rabbit platelets: Possible involvement of the lipoxygenase pathway, Arch. Biochem. Biophys. 223:33-39.PubMedCrossRefGoogle Scholar
  36. Lewis. A. J., Dervinis. A., and Chang, J., 1984, The effects of antiallergic and bronchodilator drugs on platelet-activating factor (PAF-acether) induced bronchospasm and platelet aggregation, Agents Actions 15:636–642.PubMedCrossRefGoogle Scholar
  37. Lewis, R. A., and Austen, K. F., 1984, The biologically active leukotrienes biosynthesis, metabolism, receptors, functions, and pharmacology, J. Clin. Invest. 73:889-897.PubMedCrossRefGoogle Scholar
  38. Lin, A. H., Morton, D. R., and Gorman, R. R., 1982, Acetyl glyceryl ether phosphorylcholine stimulates leukotriene B4 synthesis in human polymorphonuclear leukocytes, J. Clin. Invest. 70:1058–1065.PubMedCrossRefGoogle Scholar
  39. Marcus, A. J., Safier, L. B., Ullman, H. L., Wong, K. T. H., Broekman. M. J., Weksler, B. B., and Kaplan, K. L., 1981, Effects of acetyl glyceryl ether phosphorylcholine on human platelet function in vitro, Blood 58:1027–1031.PubMedGoogle Scholar
  40. Maridonneau-Parini, I., Lagente, V., Lefort, J., Randon, J., Russo-Marie, F., and Vargaftig, B. B., 1985, Desensitization to PAF-induced bronchoconstriction and to activation of alveolar macrophages by repeated inhalations of PAF in the guinea pig, Biochem. Biophys. Res. Commun. 131:42–49.PubMedCrossRefGoogle Scholar
  41. Mauco, G., Chap, H., and Douste-Blazy, L., 1983, Platelet activating factor (PAF-acether) promotes an early degradation of phosphatidylinositol-4,5-biphosphate in rabbit platelets, FEBS Lett. 153:361– 365.PubMedCrossRefGoogle Scholar
  42. Mendlovic, F., Corvera, S., and Garcia-Sainz, J. A., 1984, Possible involvement of cyclooxy-genase products in the actions of platelet-activating factor and of lipoxygenase products in the vascular effects of epinephrine in perfused rat liver, Biochem. Biophys. Res. Commun. 123:507–514.PubMedCrossRefGoogle Scholar
  43. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1983, Biosynthesis of platelet activating factor in rabbit polymorphonuclear neutrophils, J. Biol. Chem. 258:6213–6218.PubMedGoogle Scholar
  44. Nishihira, J., and O’Flaherty, J. T. ,1985, Phorbol myristate acetate receptors in human polymorphonuclear neutrophils, J. Immunol. 135:3439–3447.PubMedGoogle Scholar
  45. Nishihira, J., Ishibashi, T., Imai, Y., and Muramatsu, T., 1986, Purification and characterization of the specific binding protein for platelet activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phos-phocholine) from human platelets, Tohoku J. Exp. Med. (in press).Google Scholar
  46. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308:639–697.CrossRefGoogle Scholar
  47. O’Flaherty, J. T., 1982, Biology of disease. Lipid mediators of inflammation and allergy, Lab. Invest. 47:314–329.PubMedGoogle Scholar
  48. O’Flaherty, J. T., 1985, Neutrophil degranulation: Evidence pertaining to its mediation by the combined effects of leukotriene B4, platelet-activating factor, and 5-HETE, J. Cell. Physiol. 122:229–239.PubMedCrossRefGoogle Scholar
  49. O’Flaherty, J. T., Miller, C. H., Lewis, J. C., Wykle, R. L., Bass, D. A., McCall, C. E., Waite, M., and DeChatelet, L. R., 1981a, Neutrophil responses to platelet-activating factor, Inflammation 5:193–201.PubMedCrossRefGoogle Scholar
  50. O’Flaherty, J. T., Swendsen, C. L., Lees, C. J., and McCall, C. E., 1981b, Role of extracellular calcium in neutrophil degranulation responses to l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine, Am. J. Pathol. 105:107–113.PubMedGoogle Scholar
  51. O’Flaherty, J. T., Lees, C. J., Miller, C. H., McCall, C. E., Lewis, J. C, Love, S. H., and Wykle, R. L., 1981c, Selective desensitization of neutrophils: Further studies with l-O-alkyl-srt-glycero-3-phosphocholine analogues, J. Immunol. 127:731–737.PubMedGoogle Scholar
  52. O’Flaherty, J. T., Hammett, M. J., Shewmake, T. B., Wykle, R. L., Love, S. H., McCall, C. E., and Thomas, J. M., 198Id, Evidence for 5,12-dihydroxy-6,8,10,14-eicosatetraenoate as a mediator of human neutrophil aggregation, Biochem. Biophys. Res. Commun. 103:552–558.PubMedCrossRefGoogle Scholar
  53. O’Flaherty, J. T., Wykle, R. L., McCall, C. E., Shewmake, T. B., Lees, C. J., and Thomas, M., 198le, Desensitization of the human neutrophil degranulation response: Studies with 5,12-di-hydroxy-6,8,10,14-eicosatetraenoic acid, Biochem. Biophys. Res. Commun. 101:1290–1296.PubMedCrossRefGoogle Scholar
  54. O’Flaherty, J. T., Salzer, W. L., Cousart, S., McCall, C. E., Piantadosi, C., Surles, J. R., Hammett, M. J., and Wykle, R. L., 1983, Platelet-activating factor and analogues: Comparative studies with human neutrophils and rabbit platelets, Res. Commun. Chem. Pathol. Pharmacol. 39:291–309.PubMedGoogle Scholar
  55. O’Flaherty, J. T., Schmitt, J. D., Wykle, R. L., Redman, J. F., and McCall, C. E., 1985, Di-acylglycerols and Mezerein activate neutrophils by a phorbol myristate acetate-like mechanism, J. Cell. Phys. 125:192–199.CrossRefGoogle Scholar
  56. O’Flaherty, J., Kosfeld, S., and Nishihira, J., 1986, Binding and metabolism of leukotriene B4 by neutrophils and their subcellular organelles, J. Cell. Physiol. 126:359–370.PubMedCrossRefGoogle Scholar
  57. Pfeilschifter, J., Kurtz, A., and Bauer, C., 1985, Inhibition of renin secretion by platelet activating factor (acetylglyceryl ether phosphorylcholine) in cultured rat renal juxtaglomerular cells, Biochem. Biophys. Res. Commun. 127:093–910.CrossRefGoogle Scholar
  58. Polonsky, J., Tence, M., Varenne, P., Das, B.C., Lunel, J., and Benveniste, J., 1980, Release of l-O-alkylglyceryl-3-phosphorylcholine, O-deacetyl platelet-activating factor, from leukocytes: Chemical ionization mass spectrometry of phospholipids, Proc. Natl. Acad. Sci. USA 77:7019–7023.PubMedCrossRefGoogle Scholar
  59. Samuelsson, B., 1982, The leukotrienes: An introduction, in Leukotrienes and Other Lipoxygenase Products (B. Samuelsson and R. Paoletti, eds.), Raven Press, New York.Google Scholar
  60. Satouchi, K., Pinckard, R. N., McManus, L. M., and Hanahan, D. J., 1981, Modification of the polar head group of acetyl glyceryl ether phosphorylcholine and subsequent effects upon platelet activation, J. Biol. Chem. 256:4425–4432.PubMedGoogle Scholar
  61. Shaw, J. O., and Lyons, R. M., 1982, Requirements for different CaJ. T.+ pools in the activation of rabbit platelets, Biochim. Biophys. Acta 714:492–499.PubMedCrossRefGoogle Scholar
  62. Shaw, J. O., Printz, M. P., Hirabayashi, K., and Henson, P. M., 1978, Role of prostaglandin synthesis in rabbit platelet activation induced by basophil-derived platelet-activating factor, J. Immunol. 121:1939–1945.PubMedGoogle Scholar
  63. Shaw, J. O., Pinckard, R. N., Ferrigni, K. S., McManus, L. M., and Manahan, D. J., 1981, Activation of human neutrophils with l-0-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor), J. Immunol. 127:1250–1255.PubMedGoogle Scholar
  64. Shen, T. Y., Hwang, S., Cheah, M. J., and Lee, C. C., 1983, Effects of nonsteroid antiinflammatory drugs (NSAIDS) on the specific binding of platelet activating factor (PAF) to membrane preparations of rabbit platelets, J. Pharmacol. 14:20.Google Scholar
  65. Shen, T. Y., Hwang, S., Chang, M. N., Doebber, T. W., Lam, M. T., Wu, M. S., Wang, X., Han, G. Q., and Li, R. Z., 1985, Characterization of a platelet-activating factor receptor antagonist isolated from haifenteng (Piper futokadsura) Specific inhibition of in vitro and in vivo platelet-activating factor-induced effects, Proc. Natl. Acad. Sci. USA 82:672–676.PubMedCrossRefGoogle Scholar
  66. Shukla, D. D., and Hanahan, D. J., 1982, AGEPC (platelet activating factor) induced stimulation of rabbit platelets: Effects on phosphatidylinositol, di-and tri-phosphoinositides and phosphatidic acid metabolism, Biochem. Biophys. Res. Commun. 106:697–703.PubMedCrossRefGoogle Scholar
  67. Shukla, S. D., Buxton, D. B., Olson. M. S., and Hanahan, D. J., 1983, Acetylglyceryl ether phos-phorylcholine. A potent activator of hepatic phosphoinositide metabolism and glycogenosis, J. Biol. Chem. 258:10212–10214.PubMedGoogle Scholar
  68. Smith, R. J., Bowman, B. J., and Iden, S. S., 1984, Stimulation of the human neutrophil superoxide anion-generating system with 1 -0-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorycholine, Biochem. Pharmacol. 33:973–978.PubMedCrossRefGoogle Scholar
  69. Stimler, N. P., 1985, Parasympathetic stimulation as a mechanism for PAF-induced contractile responses in lung, October 15–18, New Horizons in Platelet Activating Factor Research, Mariner’s Inn, Palmetto Dunes Resort, Hilton Head Island, South Carolina.Google Scholar
  70. Stimler, N. P., and O’Flaherty. J. T., 1983, Spasmogenic properties of platelet-activating factor: Evidence for a direct mechanism in the contractile response of pulmonary tissues, Am. J. Pathol. 113:75–84.PubMedGoogle Scholar
  71. Stimler, N. P., Bloor, C. M., Hugli, T. E., Wykle, R. L., McCall, C. E., and O’Flaherty, J. T., 1981, Anaphylactic actions of platelet-activating factor, Am. J. Pathol. 105:64–69.PubMedGoogle Scholar
  72. Stimler, N. P., Gerard, C, and O’Flaherty, J. T., 1983, Contraction of human lung tissues by platelet-activating factor (AAGPC), INSERMS 23:195–204.Google Scholar
  73. Surles. J. R., Wykle, R. L., O’Flaherty, J. T., Salzer, W. L., Thomas, M. J., Snyder, P., and Piantadosi, C., 1984, Facile synthesis of platelet-activating fetor and racemic analogues containing unsaturation in the sn-1-alkyl chain, J. Med. Chem. 28:73–78.CrossRefGoogle Scholar
  74. Swendsen, C. L., Ellis, J. M., Chilton, F. H., III, O’Flaherty, J. T., and Wykle, R. L., 1983, 1–0-alkyl-2-acyl-sn-glycero-3-phosphocholine: A novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore A23187, Biochem. Biophys. Res. Commun. 113:72–79.PubMedCrossRefGoogle Scholar
  75. Terashita, Z., Tsushima, S., Yoshioka, Y., Nomura, H., Inada, Y., and Nishikawa, K., 1983, CV-3988—A specific antagonist of platelet activating factor (PAF), Life Sci. 32:1975–1982.PubMedCrossRefGoogle Scholar
  76. Tokumura, A., Homma, H., and Hanahan, D. J., 1985, Structural analogs of alkylacetylglycerophos-phocholine inhibitory behavior on platelet activation, J. Biol. Chem. 260:12710–12714.PubMedGoogle Scholar
  77. Valone, F. H., 1984, Isolation of a platelet membrane protein which binds the platelet-activating factor l-0-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine, Immunology 52:169–174.PubMedGoogle Scholar
  78. Valone, F. H., 1985a, Inhibition of binding of the platelet-activating factor AGEPC to platelets by the AGEPC analog rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl-2-thiazolioethyl phosphate (CV-3988), Biochem. Biophys. Res. Comm. 126:502–508.PubMedCrossRefGoogle Scholar
  79. Valone, F. H., 1985b, Inhibition of PAF binding by the calcium channel blockers diltiazem (Dil) and verapamil (Ver), October 15–18, New Horizons in Platelet Activating Factor Research, Mariner’s Inn, Palmetto Dunes Resort, Hilton Head Island, South Carolina.Google Scholar
  80. Valone, F. H., and Goetzl, E. J., 1983, Specific binding by human polymorphonuclear leucocytes of the immunological mediator l-0-hexadecyl/octadecyl-2-acetyl-sn-glycero-3-phosphorylcholine. Immunology 48:141–148.PubMedGoogle Scholar
  81. Valone, F. H., Coles, E., Reinhold, V. R., and Goetzl, E. J., 1982, Specific binding of phospholipid platelet-activating factor by human platelets, J. Immunol. 129:1637–1641.PubMedGoogle Scholar
  82. Voelkel, N. F., Worthen, S., Reeves, J. T., Henson, P. M., and Murphy, R. C, 1982, Nonim-munological production of leukotrienes induced by platelet-activating factor, Science 218:286–288.PubMedCrossRefGoogle Scholar
  83. White, G. C, II, 1984, Effect of l-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine on calcium fluxes by human platelet microsomes, Biochem. Biophys. Res. Commun. 120:474–480.PubMedCrossRefGoogle Scholar
  84. Williams, K. A., and Haslam, R. J., 1984, Effects of NaCl and GTP on the inhibition of platelet adenylate cyclase by l-0-octadecyl-2–0-acetyl-sn-glyceryl-3-phosphorylcholine (synthetic platelet-activating factor), Biochim. Biophys. Acta. 770:216–223.PubMedCrossRefGoogle Scholar
  85. Wissner, A., Sum, P. E., Schaub, R. E.. Kohler, C. A., and Goldstein, B. M., 1984, Analogues of platelet activating factor (PAF). 1. Some modifications of the alkoxy chain, J. Med. Chem. 27:1174–1181.PubMedCrossRefGoogle Scholar
  86. Wykle, R. L., Miller, C. H., Lewis, J. C., Schmitt, J. D., Smith, J. A., Surles, J. R., Piantadosi, C., and O’Flaherty, J. T., 1981, Stereospecific activity of l-0-alkyl-2–0-acetyl-sn-glycero-3-phos-phocholine and comparison of analogs in the degranulation of platelets and neutrophils, Biochem. Biophys. Res. Commun. 100:1651–1658.PubMedCrossRefGoogle Scholar
  87. Wykle, R. L., Surles, J. R., Piantadosi, C., Salzer, W. L., and O’Flaherty, J. T., 1982, Platelet activating factor (l-0-alkyl-2–0-acetyl-sn-glycero-3-phosphocholine). Activity of analogs lacking oxygen at the 2-position, FEBS Lett. 141:29–32.PubMedCrossRefGoogle Scholar
  88. Yasaka, T., Boxer, L., and Baehner, R. L., 1982, Monocyte aggregation and superoxide anion release in response to formyl-methionyl-leucyl-phenylalanine (FMLP) and platelet-activating factor (PAF), J. Immunol. 128:1939–1944.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Joseph T. O’Flaherty
    • 1
  1. 1.Department of MedicineWake Forest University Medical CenterWinston-SalemUSA

Personalised recommendations