Interrelationships in the Metabolism of Platelet-Activating Factor and Arachidonate in Neutrophils

  • Robert L. Wykle


Polymorphonuclear neutrophils (PMN) produce PAF upon activation by a number of stimuli including phagocytosis, chemotactic peptide (fMLP), C5a, and ionophore A23187 (Camussi et al., 1981; Clark et al., 1980; Jouvin-Marche et al., 1984; Lotner et al., 1980; Lynch et al., 1979; Sánchez-Crespo et al., 1980). Of the many cells examined, PMN appear to produce the highest amount of PAF (Jouvin-Marche et al., 1984). The extent to which PMN, as well as other cells, release PAF into the surrounding milieu is controversial, although most investigators do observe release (Betz and Henson, 1980) and others have reported that approximately half the PAF synthesized is released from the cells (Jouvin-Marche et al., 1984). The release and optimal synthesis of PAF require extracellular Ca2+ (Betz and Henson, 1980, Ludwig et al., 1984, 1985). In recent studies of human PMN, it was shown that albumin added to the media enhances PAF synthesis by at least fourfold (50 mg human serum albumin/ml) and probably up to sevenfold (Ludwig et al., 1985), and that albumin is mandatory for PAF release (Ludwig et al., 1985).


Platelet Activate Factor Human Neutrophil Glyceryl Ether Human Polymorphonuclear Leukocyte Arachidonate Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



platelet activating factor




polymorphonuclear neutrophils




high-performance liquid chromatography


choline-containing phosphoglycerides


ethanolamine-containing phosphoglycerides


5-hydroxy-6,8,ll,14-eicosatetraenoic acid


5-hydro-peroxy-6,8,l l,14-eicosatetraenoic acid


leukotriene B4,5(S),12(R)-dihydroxy-6-cis,8,10-trans-14-cis-eicosatetraenoic acid.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, D. H., and Snyder, F., 1984, Release of arachidonic acid from l-alkyl-2-acyl-sn-glycero-3 phosphocholine, a precursor of platelet-activating factor, in rat alveolar macrophages, Biochim. Biophys. Acta 796:92–101.PubMedGoogle Scholar
  2. Alonso, F., Gil, M. G., Sanchez-Crespo, M., and Mato, J. M., 1982, Activation of l-alkyl-2-lyso glycero-3-phosphocholine, J. Biol. Chem. 257(7):3376–3378.PubMedGoogle Scholar
  3. Betz, S. J., and Henson, P. M., 1980, Production and release of platelet-activating factor (PAF); dissociation from degranulation and superoxide production in the human neutrophil, J. Immunol. 125(6):2756–2763.PubMedGoogle Scholar
  4. Billah, M. M., Bryand, R. W., and Siegel, M. I., 1985, Lipoxygenase products of arachidonic acid modulate biosynthesis of platelet-activating factor (l-0-alkyl-2-acetyl-sn-glycero-3-phos phocholine) by human neutrophils via phospholipase A2, J. Biol. Chem. 260(11):6899–6906.PubMedGoogle Scholar
  5. Blank, M. L., Lee, T.-C., Fitzgerald, V., and Snyder, F., 1981, A specific acetylhydrolase for 1 alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid), J. Biol. Chem. 256(1):175–178.PubMedGoogle Scholar
  6. Camussi, G., Aglietta, M., Coda, R., Bussolino, F., Piacibello, W., and Tetta, C., 1981, Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: Monocytes, polymorphonuclear neutrophils and basophils, Immunology 42:191–199.Google Scholar
  7. Chilton, F. H., O’Flaherty, J. T., Walsh, C. E., Thomas, M. J., Wykle, R. L., DeChatelet, L. R., and Waite, B. M., 1982, Platelet activating factor: Stimulation of the lipoxygenase pathway in polymorphonuclear leukocytes by l-0-alkyl-2–0-acetyl-sn-glycero-3-phosphocholine, J. Biol. Chem. 257(10):5402–5407.PubMedGoogle Scholar
  8. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983a, Metabolic fate of platelet-activating factor in neutrophils, J. Biol. Chem. 258(10):6357–6361.PubMedGoogle Scholar
  9. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983b, Selective acylation of lyso platelet activating factor by arachidonate in human neutrophils, J. Biol. Chem. 258(12):7268–7271.PubMedGoogle Scholar
  10. Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L., 1984, l-O-alkyl-2-arachidonoyl-srt-glycero-3-phosphocholine: A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259(19): 12014–12019.PubMedGoogle Scholar
  11. Clark, P. O., Hanahan, D. J., and Pinckard, R. N., 1980, Physical and chemical properties of platelet-activating factor obtained from human neutrophils and monocytes and rabbit neutrophils and basophils, Biochim. Biophys. Acta 628:69–75.PubMedCrossRefGoogle Scholar
  12. Clay, K. L., Murphy, R. C., Andres, J. L., Lynch, J., and Henson, P. M., 1984, Structure elucidation of platelet activating factor derived from human neutrophils, Biochem. Biophys. Res. Commun. 121(3):815–825.PubMedCrossRefGoogle Scholar
  13. Gallin, J. I., Metcalf, J. A., Roos, D., Seligmann, B., and Friedman, M. M., 1984, Organelle-depleted human neutrophil cytoplasts used to study fmet-leu-phe receptor modulation and cell function, J. Immunol. 133(1 ):415–421.PubMedGoogle Scholar
  14. Hwang, S.-B., Lam, M.-H., and Pong, S.-S., 1986, Ionic and GTP regulation of binding of platelet-activating factor to receptors and platelet-activating factor-induced activation of GTPase in rabbit platelet membranes, J. Biol. Chem. 261(2):532–537.PubMedGoogle Scholar
  15. Jouvin-Marche, E., Ninio, E., Beaurain, G., Tence, M., Niaudet, P., and Benveniste, J., 1984, Biosynthesis of PAF-acether (platelet-activating factor): VII. Precursors of PAF-acether and acetyl-transferase activity in human leukocytes, J. Immunol. 133:892–898.PubMedGoogle Scholar
  16. Kramer, R. M., and Deykin, D., 1983, Arachidonoyl transacylase in human platelets: Coenzyme A-independent transfer of arachidonate from phosphatidylcholine to lysoplasmenylethanolamine, J. Biol. Chem. 258(22): 13806–13811.PubMedGoogle Scholar
  17. Kramer, R. M., Patton, G. M., Pritzker. C. R., and Deykin, D., 1984, Metabolism of platelet-activating factor in human platelets: Transacylase-mediated synthesis of l-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine, J. Biol. Chem. 259(21): 13316–13320.PubMedGoogle Scholar
  18. Lad, P. M., Olson, C. V., and Grewal, I. S., 1985, Platelet-activating factor mediated effects on human neutrophil function are inhibited by pertussis toxin, Biochem. Biophys. Res. Commun. 129(3):632–638.PubMedCrossRefGoogle Scholar
  19. Lee, T.-C., Malone, B., Wasserman, S. I., Fitzgerald, V., and Snyder, F., 1982, Activities of enzymes that metabolize platelet-activating factor (l-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in neutrophils and eosinophils from humans and the effect of a calcium ionophore, Biochem. Biophys. Res. Commun. 105(4): 1303–1308.PubMedCrossRefGoogle Scholar
  20. Lenihan, D. J., and Lee, T.-C., 1984, Regulation of platelet activating factor synthesis: Modulation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes, Biochem. Biophys. Res. Commun. 120(3):834–839.PubMedCrossRefGoogle Scholar
  21. Lin, A. H., Morton, D. R., and Gorman, R. R., 1982, Acetyl glyceryl ether phosphorylcholine stimulates leukotriene B4 synthesis in human polymorphonuclear leukocytes, J. Clin. Invest. 70:1058–1065.PubMedCrossRefGoogle Scholar
  22. Lotner, G. Z., Lynch, J. M., Betz, S. J., and Henson, P. M., 1980, Human neutrophil-derived platelet activating factor, J. Immunol. 124(2):676–684.PubMedGoogle Scholar
  23. Ludwig, J. C., McManus, L. M., Clark, P. O., Hanahan, D. J., and Pinckard, R. N., 1984, Modulation of platelet-activating factor (PAF) synthesis and release from human polymorphonuclear leukocytes (PMN): Role of extracellular Ca2+, Arch. Biochem. Biophys. 232(1): 102–110.PubMedCrossRefGoogle Scholar
  24. Ludwig, J. C., Hoppens, C. L., McManus, L. M., Mott, G. E., and Pinckard, R. N., 1985, Modulation of platelet-activating factor (PAF) synthesis and release from human polymorphonuclear leukocytes (PMN): Role of extracellular albumin, Arch. Biochem. Biophys. 241(2):337–347.PubMedCrossRefGoogle Scholar
  25. Lynch, J. M., Lotner, G. Z., Betz, S. J., and Henson, P. M., 1979, The release of a platelet-activating factor of stimulated rabbit neutrophils, J. Immunol. 123(3): 1219–1226.PubMedGoogle Scholar
  26. Malone, B., Lee, T.-C., and Snyder, F., 1985, Inactivation of platelet activating factor by rabbit platelets, J. Biol. Chem. 260(3): 1531 -1534.PubMedGoogle Scholar
  27. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1982, Ether lipid content and fatty acid distribution in rabbit polymorphonuclear neutrophil phospholipids. Lipids 17(2):72–77.PubMedCrossRefGoogle Scholar
  28. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1982, Biosynthesis of platelet activating factor in rabbit polymorphonuclear neutrophils, J. Biol. Chem. 258(20):6213–6218.Google Scholar
  29. Mueller, H. W., O’Flaherty. J. T.. Greene, D. G., Samuel, M. P., and Wykle. R. L., 1984a, 1-O-alkyl-linked glycerophospholipids of human neutrophils: Distribution of arachidonate and other acyl residues in the ether-linked and diacyl species, J. Lipid Res. 25:383–388.PubMedGoogle Scholar
  30. Mueller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1984b, The molecular species distribution of platelet-activating factor synthesized by rabbit and human neutrophils, J. Biol. Chem. 259(23): 14554–14559.PubMedGoogle Scholar
  31. Ninio, E., Mencia-Huerta, J. M., and Benveniste, J., 1983, Biosynthesis of platelet-activating factor (PAF-acether): V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187, Biochim. Biophys. Acta 751:298–304.PubMedGoogle Scholar
  32. O’Flaherty, J. T., 1985, Neutrophil degranulation: Evidence pertaining to its mediation by the combined effects of leukotriene B4, platelet-activating factor, and 5-HETE, J. Cell. Biol. 122:229–239.Google Scholar
  33. O’Flaherty, J. T., Wykle, R. L., McCall, C. E., Shewmake, T. B., Lees, C. J., and Thomas, M., 1981, Desensitization of the human neutrophil degranulation response: Studies with 5,12-dihy-droxy-6,8,10,14-eicosatetraenoic acid, Biochem. Biophys. Res. Commun. 101(4): 1290–1296.PubMedCrossRefGoogle Scholar
  34. O’Flaherty, J. T., Thomas, M. J.. Hammett, M. J., Carroll, C., McCall, C. E., and Wykle, R. L., 1983, 5-HETE potentiates the human neutrophil degranulating action of platelet-activating factor, Biochem. Biophys. Res. Commun. 111(1): 1–7.PubMedCrossRefGoogle Scholar
  35. Pinckard, R. N., Jackson, E. M., Hoppens, C., Weintraub, S. T., Ludwig, J. C., McManus, L. M., and Mott, G. E., 1984, Molecular heterogeneity of platelet-activating factor produced by stimulated human polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 122(1 ):325–332.PubMedCrossRefGoogle Scholar
  36. Ribbes, G., Ninio, E., Fontan, P., Record, M., Chap, H., Benveniste, J., and Douste-Blazy, L., 1985, Evidence that biosynthesis of platelet-activating factor (PAF-acether) by human neutrophils occurs in an intracellular membrane, FEBS Lett. 191(2): 195–199.PubMedCrossRefGoogle Scholar
  37. Robinson, M., and Snyder, F., 1985, Metabolism of platelet-activating factor by rat alveolar macrophages: Lyso-PAF as an obligatory intermediate in the formation of alkylarachidonoyl glycero-phosphocholine species, Biochem. Biophys. Acta 837:52–56.PubMedGoogle Scholar
  38. Robinson, M., Blank, M. L., and Snyder, F., 1985, Acylation of lysophospholipids by rabbit alveolar macrophages: Specificities of CoA-dependent and CoA-independent reactions, J. Biol. Chem. 260(13):7889–7895.Google Scholar
  39. Roos, D., Voetman, A. A., and Meerhof, L. J., 1983, Functional activity of enucleated human polymorphonuclear leukocytes, J. Cell. Biol. 97:368–377.PubMedCrossRefGoogle Scholar
  40. Sanchez-Crespo, M., Alonso, F., and Egido, J., 1980, Platelet-activating factor in anaphylaxis and phagocytosis: I. Release from human peripheral polymorphonuclears and monocytes during the stimulation by ionophore A23187 and phagocytosis but not from degranulating basophils, Immunology 40:645–655.PubMedGoogle Scholar
  41. Smith, P. J. and Bowman, B. J., 1982, Stimulation of human neutrophil degranulation with l-O-octadecyl-2–0-acetyl-sn-glyceryl-3-phosphorylcholine: Modulation by inhibitors or arachidonic acid metabolism, Biochem. Biophys. Res. Commun. 104(4): 1495–1501.PubMedCrossRefGoogle Scholar
  42. Sugiura, T., Katayama, O., Fukui, J., Nakagawa, and Waku, K., 1984, Mobilization of arachidonic acid between diacyl and ether phospholipids in rabbit alveolar macrophages, FEBS Lett. 165(2):273–276.PubMedCrossRefGoogle Scholar
  43. Sugiura, T., and Waku, K., 1985, CoA-independent transfer of arachidonic acid from l,2-diacyl-sn-glycero-3-phosphocholine to l-0-alkyl-sn-glycero-3-phosphocholine (lyso platelet-activating factor) by macrophage microsomes, Biochim. Biophys. Res. Commun. 127:384–390.CrossRefGoogle Scholar
  44. Surles, J. R., Wykle, R. L., O’Flaherty, J. T., Salzer, W. L., Thomas, M. J., Snyder, F., and Piantadosi, C., 1985, Facile synthesis of platelet-activating factor and racemic analogues containing unsaturation in the sw-l-alkyl chain, J. Med. Chem. 28(l):73–78.PubMedCrossRefGoogle Scholar
  45. Swendsen, C. L., Ellis, J. M., Chilton III, F. H., O’Flaherty, J. T., and Wykle, R. L., 1983, 1-O-alkyl-sn-glycero-3-phosphocholine: A novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore A23187, Biochem. Biophys. Res. Commun. 113(l):72–79.PubMedCrossRefGoogle Scholar
  46. Walsh, C. E., Waite, B. M., Thomas, M. J., and DeChatelet, L. R., 1981, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256(14):7228–7234.PubMedGoogle Scholar
  47. Walsh, C. E., DeChatelet, L. R., Chilton, F. H., Wykle, R. L., and Waite, M., 1983, Mechanism of arachidonic acid release in human polymorphonuclear leukocytes, Biochim. Biophys. Acta 750:32–40.PubMedGoogle Scholar
  48. Wyrick, S. D., McClanan, J. S., Wykle, R. L., and O’Flaherty, J. T., 1985, Tritiated hexadecyl platelet activating factor (PAF), J. Labelled Compound Radiopharm. 22(11):1169–1174.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Robert L. Wykle
    • 1
  1. 1.Department of BiochemistryBowman Gray School of Medicine of Wake Forest UniversityWinston-SalemUSA

Personalised recommendations