Diversity of the Biochemical and Biological Behavior of Platelet-Activating Factor

  • Raj Kumar
  • Donald J. Hanahan


Platelet-activating factor* now occupies a unique position in the list of agonists capable of dramatically influencing cellular metabolism. Not only is it the first bona fide example of a naturally produced biologically active phospholipid, but it also ranks as one of the most potent lipid chemical mediators discovered to date. While the latter characteristic of this substance is most impressive, that is, its ability to cause 50% secretion of serotonin from washed rabbit platelets within 1 min at a concentration of 1 × 10-10 to 1 × 10-11M, this fact actually defines the formidable problem in any incisive study of the biochemistry of its receptor and of its mode of action. For example, it has been reported recently (Valone et al., 1982) that platelets may contain approximately 1400 high-affinity, low-capacity sites (considered to be the major receptor) for binding of this lipid chemical mediator. Thus, it is clear that any investigation designed to isolate and characterize these receptors, to relate binding to a biochemical or biological event, and to follow its metabolic fate must include techniques capable of detecting products of reaction in the picogram range. In addition, the reactions involved with platelet-activating factor on cells are very fast, in part Ca2+ dependent, and can be described by the diagramatic outline in Scheme I.


Alveolar Type Glyceryl Ether Glucose Release Rabbit Platelet Alveolar Epithelial Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, I. Y. R., and Bowden, D. H., 1974, The type II cells as progenitor of alveolar epithelial regeneration, Lab. Invest. 30:2238–2247.Google Scholar
  2. Askin, F. B., and Kuhn, C., 1971, The cellular origin of pulmonary surfactant, Lab. Invest. 25:260– 268.PubMedGoogle Scholar
  3. Benveniste, J., and Arnoux, B., 1983, Platelet-Activating Factor: INSERM Symposium No. 23 (J. Benveniste and B. Arnoux, eds.), Elsevier Science Publishers, Amsterdam.Google Scholar
  4. Billah, M. M., and Johnston, J. M., 1983, Identification of phospholipid platelet activating factor (1–0alkyl-2-acetyl-sn-glycero-3-phosphocholine) in human amniotic fluid and urine, Biochem. Biophys. Res. Commun. 113:51–58.PubMedCrossRefGoogle Scholar
  5. Buxton, D. B., Shukla, S. D., Hanahan, D. J., and Olson, M. S., 1984, Stimulation of hepatic glycogenolysis by acetylglyceryl ether phosphorylcholine, J. Biol. Chem. 259:1468–1471.PubMedGoogle Scholar
  6. Buxton, D. B., Fisher, R. A., Hanahan, D. J., and Olson, M. S., 1986, Platelet-activating factor-mediated vasoconstriction and glycogenolysis in the perfused rat liver, J. Biol. Chem. 261:644– 649.PubMedGoogle Scholar
  7. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983a, Metabolic fate of platelet-activating factor in neutrophil, J. Biol. Chem. 258:6357–6361.PubMedGoogle Scholar
  8. Chilton, F. H., O’Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L., 1983b, Selective acylation of lyso platelet-activating factor by arachidonate in human neutrophil, J. Biol. Chem. 258:7268–7271.PubMedGoogle Scholar
  9. Evans, M. J., Cabral, L. J., Stephens, R. J., and Freeman, G., 1975, Transformation of alveolar type II cells to type I cells following exposure to NO2, Exp. Mol. Path. 22:142–150.CrossRefGoogle Scholar
  10. Gilfillan, A. M., and Rooney, S. A., 1985, Arachidonic acid metabolites stimulate phosphatidylcholine secretion in primary culture of type II pneumatocytes, Biochim. Biophys. Acta 833:336–341.PubMedGoogle Scholar
  11. Goodman, B. E., Fleischer, R. S., and Crandall, E. D., 1983, Evidence for active Na transport by cultured monolayer of pulmonary alveolar epithelial cells, Am. J. Physiol. 245:78–83.Google Scholar
  12. Halonen, M., Palmer, J. D., Lohman, I. C., McManus, L. M., and Pinckard, R. N., 1980, Respiratory and circulatory alterations induced by acetyl glyceryl ether phosphorycholine (AGEPC), a mediator of IgE anaphylaxis in the rabbit, Am. Rev. Resp. Dis. 122:915–924.PubMedGoogle Scholar
  13. Halonen, M., Palmer, J. D., Lohman, I. C., McManus, L. M., and Pinckard, R. N., 1981, Differential effects of platelet depletion on the cardiovascular and pulmonary alterations of IgE anaphylaxis and AGEPC infusion in the rabbit, Am. Rev. Resp. Dis. 124:416–421.PubMedGoogle Scholar
  14. Hanahan, D. J., and Weintraub, S. T., 1985, Platelet-activating factor isolation, identification, and assay, in: Methods of Biochemical Analysis ,Volume 31 (D. Glick, ed.), Wiley, New York, pp. 195–219.CrossRefGoogle Scholar
  15. Hoffman, D. R., Truong, C. T., and Johnston, J. M., 1987, Platelet-activating factor metabolism in fetal rabbit lung development, in: New Horizons in Platelet Activating Factor Research (C.M. Winslow and M. L. Lee, eds.), Wiley, Chichester, pp. 51–56.Google Scholar
  16. Hoffman, D. R., Truong, C. T., and Johnston, J. M., 1985b, Production and function of platelet-activating factor in human fetal lung maturation, Fed. Proc. 44:1203.Google Scholar
  17. Horrocks, L. A., and Sharma, M., 1982, Plasmalogens and 0-alkyl glycerophospholipids, in: New Comprehensive Biochemistry, Volume 4, Phospholipids (J.N. Hawthorne and G. B. Ansell, eds.), Elsevier Biomedical Press, New York, pp. 51–93.CrossRefGoogle Scholar
  18. Ieyasu, H., Takai, Y., Kaibuchi, K., Sawamura, M., and Nishizuka, Y., 1982, A role of calcium-activated, phospholipid-dependent protein kinase in platelet-activating factor-induced serotonin release from rabbit platelets, Biochem. Biophys. Res. Commun. 108:1701–1708.PubMedCrossRefGoogle Scholar
  19. Inarrea, P., Alonso, F., and Sanchez, C. M., 1983, Platelet-activating factor: An effector substance of the vasopermeability changes induced by the infusion of immune aggregates in the mouse, Immunopharmacology 6:7–14.PubMedCrossRefGoogle Scholar
  20. Kikkawa, Y., and Yoneda, K., 1974, The type II epithelial cells of the lung. I. Method of isolation, Lab. Invest. 30:76–84.PubMedGoogle Scholar
  21. King, R. J., 1974, The surfactant system of the lung, Fed. Proc. 33:2238–2247.PubMedGoogle Scholar
  22. Kumar, R., King, R. J., and Hanahan, D. J., 1985, Occurrence of glyceryl ethers in the phosphatidylcholine fraction of surfactant from dog lungs, Biochem. Biophys. Acta 836:19–26.PubMedGoogle Scholar
  23. Lapetina, E. G., and Siegel, F. L., 1983, Shape change induced in human platelets by platelet-activating factor. Correlation with the formation of phosphatidic acid and phosphorylation of a 40,000-dalton protein, J. Biol. Chem. 258:7241–7245.Google Scholar
  24. Malone, B., Lee, T.-C, and Snyder, F. J., 1985, Inactivation of platelet-activating factor by rabbit platelets, J. Biol. Chem. 260:1531–1534.PubMedGoogle Scholar
  25. Mason, R. J., Williams, M. C., Widdicombe, J. H., Sanders, M. J., Misfeldt, D. S., and Berry, Jr., L. C, 1982, Transepithelial transport by pulmonary alveolar type II cells in primary culture, Proc. Natl. Acad. Sci. USA 79:6033–6037.PubMedCrossRefGoogle Scholar
  26. Mason, R. J., William, M. C., and Widdicombe, J. H., 1983, Fluid and electrolyte transport across monlaver of alveolar type II cells in vitro. Am. Rev. Resp. Dis. 127:s24–s28.Google Scholar
  27. Müller, H. W., O’Flaherty, J. T., and Wykle, R. L., 1984, The molecular species distribution of platelet-activating factor synthesized by rabbit and human neutrophils, J. Biol. Chem. 259:14554– 14559.Google Scholar
  28. O’Flaherty, J. T., and Wykle, R. L., 1983, Biology and biochemistry of platelet-activating factor, Clin. Rev. Allergy 1:353–367.PubMedGoogle Scholar
  29. Pinckard, R. N., Farr, R. S., and Hanahan, D. J., 1979, Physiochemical and functional identity of rabbit platelet-activating factor (PAF) released in vitro from IgE-sensitized basophils, J. Immunol. 123:1847–1857.PubMedGoogle Scholar
  30. Pinckard, R. N., McManus, L. M., Halonen, M., and Hanahan, D. J., 1982, Immunopharmacology of acetyl glyceryl ether phosphorycholine. in: Immunopharmacologx of the lung (C. Lenfant and H. Newball, eds.), Marcel Dekker, New York, pp. 73–107.Google Scholar
  31. Reynolds, H. Y., and Merril, W. W., 1980, Lung immunology: The inflammatory response in lung parenchyma, Current Pulmonology 2:299–323.Google Scholar
  32. Rinaldo, J. E., and Roger, R. M., 1982, Adult respiratory distress syndrome: Changing concept of lung injury and repair, N. Engl. J. Med. 306:900–909.PubMedCrossRefGoogle Scholar
  33. Robinson, M., and Snyder, F., 1985, Metabolism of platelet-activating factor by rat alveolar macrophages. Lyso-PAF as an obligatory intermediate in the formation of alkyl arachidonoyl glycerophosphocholine species, Biochem. Biophys. Acta 837:52–56.PubMedGoogle Scholar
  34. Robinson, M., Blank, M. L., and Snyder, F., 1985, Acylation of lyso phospholipids by rabbit macrophages: Specificities of CoA-dependent reactions, J. Biol. Chem. 260:7889–7895.PubMedGoogle Scholar
  35. Shukla, S. D., Buxton, D. B., Olson, M. S., and Hanahan, D. J., 1983, Acetylglycervl ether phosphorylcholine, a potent activator of hepatic phosphoinositide metabolism and glycogenosis, J. Biol. Chem. 258:10212–10214.PubMedGoogle Scholar
  36. Synder, F., 1985, Chemical and biochemical aspect of platelet-activating factor: A novel class of acetylated ether-linked choline phospholipids, Med. Res. Rev. 5:107–140.CrossRefGoogle Scholar
  37. Staub, N. C., 1980, Pathogenesis of pulmonary edema, Prog. Cardiovasc. Dis. 23:53–80.PubMedCrossRefGoogle Scholar
  38. Stenmark, K. R., Eyzaguirre, M., Remigo, L., Secome, J., and Henson, P. M., 1985, Recovery of platelet-activating factor and leukotrienes from infants with severe bronchopulmonary dysplasia: Clinical improvement with cromolyn treatment, Am. Rev. Respir. Dis. 131:a236.Google Scholar
  39. Sugatani, J., and Hanahan, D. J., 1986, Characterization of l-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC)-induced protein phosphorylation in rabbit platelets: Inhibitory effects of AGEPC analogs, Arch. Biochem. Biophys. 246:855–864.PubMedCrossRefGoogle Scholar
  40. Tokumura, A., Homma, H., and Hanahan, D. J., 1985, Structural analogs of alkylacetylglycerophosphocholine inhibitory behavior on platelet activation, J. Biol. Chem. 260:12710–12714.PubMedGoogle Scholar
  41. Valone, F. H., Coles, E., Reinhold, V. R., and Goetzl, E. J., 1982, Specific binding of phospholipid platelet-activating factor by human platelets, J. Immunol. 129:1637–1641.PubMedGoogle Scholar
  42. Voelkel, N. F., Worthen, S., Reeves, J. J., Henson, P. M., and Murphy, R. C., 1982, Nonim-munological production of leukotrienes induced by platelet-activating factor, Science 218:286–288.PubMedCrossRefGoogle Scholar
  43. Weibel, E. R., and Gehr, P., Haies, D., Gil, J., and Bachofen, M., 1976, The cell population of the normal lung, in: Lung Cells in Disease (A. Bouhys, ed.), Elsevier, Amsterdam, pp. 3–16.Google Scholar
  44. Weibel, E. R., and Gil, J., 1977, Structure-function relationship at the alveolar level, in: Bioengineer-ing Aspect of the Lungs (J. B. West, ed.), Marcel Dekker, New York, pp. 1–81.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Raj Kumar
    • 1
  • Donald J. Hanahan
    • 1
  1. 1.Department of BiochemistryUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations