Cytoskeleton pp 251-266 | Cite as

Reorganization of Cytoskeleton

Cell Division
  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)


Cell division is a multistage reorganization of morphology in which alterations of cytoskeleton play the central role. Division, like reorganization of interphase cells, described in Chapter 7, is based on alteration of the assembly and distribution of cytoskeletal structures. There are, however, important differences between these two types of reorganization. Morphogenetic reorganization adapts the morphology of the interphase cell to its environment; the course of this reorganization is directed by external factors. In contrast, the course of cell division is directed by a strict internal program; external factors can only disturb this course.


Mitotic Cell Mitotic Spindle Interphase Cell Spindle Microtubule Contractile Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Clayton, L., and Lloyd, C. W. (1985) Actin organization during the cell cycle in meristematic plant cells. Actin is present in the cytokinetic phragmoplast,Exp. Cell Res. 156:231–238.PubMedCrossRefGoogle Scholar
  2. Cox, S. M., Rao, P. N., and Brinkley, B. P. (1979) Action of nitrous oxide and griseofulvin on microtubules and chromosome movement in dividing cells, in Effects of Drugs on Cell Nucleus (H. Busch, S. T. Crooke, and Y. Dascal, eds.). Academic Press, New York, pp. 521–549.Google Scholar
  3. McNeil, P. A., and Berns, M. W. (1981) Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells, J. Cell Biol. 88:543–553.CrossRefGoogle Scholar
  4. Mitchison, T., and Kirschner, M. W. (1985) Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation, J. Cell Biol. 101:766–777.PubMedCrossRefGoogle Scholar
  5. Sluder, G., and Begg, D. A. (1983) Control mechanisms of the cell cycle: Role of the spatial arrangement of spindle components in the timing of mitotic events, J. Cell Biol. 97:877–886.PubMedCrossRefGoogle Scholar
  6. Vandre, D. D., Kronebusch, P., and Borisy, G. G. (1984) Interphase-mitosis transition: Microtubule rearrangements in cultured cells and sea urchin eggs, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 3–16.Google Scholar
  7. Vorobjev, I. A., and Chentsov, Y. S. (1982) Centrioles in the cell cycle. I. Epithelial cells, J. Cell Biol. 98:938–949.CrossRefGoogle Scholar
  8. Yumura, S., and Fukui, Y. (1985) Reversible cyclic AMP-dependent change in distribution of myosin thick filaments inDictyostelium, Nature 314:194–196.PubMedCrossRefGoogle Scholar

Additional Readings

  1. Aubin, J. H., Osborn, M., and Weber, K. (1981) Inhibition of cytokinesis and altered contractile ring morphology induced by cytochalasins in synchronized PtK2 cells, Exp. Cell Res. 136:63–79.PubMedCrossRefGoogle Scholar
  2. Bajer, A. S. (1982) Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis, J.Cell Biol. 93:33–48.PubMedCrossRefGoogle Scholar
  3. Bajer, A., and Mole-Bajer, J. (1956) Cine-micrographic studies on mitosis in endosperm, Chromosoma 7:558–607.CrossRefGoogle Scholar
  4. Brinkley, B. R., and Brenner, S. L. (1982) Chromosome movement: A mini-review, inAxoplasmic Transport (D. G. Weiss, ed.), Springer-Verlag, Berlin, Heidelberg, pp. 27–38.Google Scholar
  5. Cande, W. Z. (1982) Nucleotide requirements for anaphase chromosome movement in permeabilized mitotic cells: Anaphase B but not anaphase A requires ATP, Cell 28:15–22.PubMedCrossRefGoogle Scholar
  6. Cande, W. Z., McDonald, K., and Meensen, R. L. (1981) A permeabilized cell model for studying cell division: A comparison of anaphase chromosome movement and cleavage furrow constriction in lysed PtK1 cells, J. Cell Biol. 88:618–629.PubMedCrossRefGoogle Scholar
  7. Cande, W. Z., McDonald, K., Wordeman, L., and Coltrin, D. (1985) In vitro anaphase spindle elongation using isolated diatom spindles. Cell Motil. 5:169–170.Google Scholar
  8. De Brabander, M., Geuens, G., De Mey, J., and Jonaiau, M. (1979) Light microscopic and ultra-structural distribution of immunoreactive tubulin in mitotic mammalian cells, Biol. Cell. 34:213–226.Google Scholar
  9. Euteneuer, U., Ris, H., and Borisy, G. G. (1983) Polarity of kinetochore microtubules in Chinese hamster ovary cells after recovery from a colcemide block, J.Cell Biol. 97:202–208.PubMedCrossRefGoogle Scholar
  10. Evans, R. M., and Fink, L. M. (1982) An alteration in the phosphorylation of vimentin-type intermediate filaments is associated with mitosis in cultural mammalian cells. Cell 29:43–52.PubMedCrossRefGoogle Scholar
  11. Hays, T. S., and Salmon, E. D. (1985) Poleward traction force on a kinetochore at metaphase is a product of the number of kinetochore microtubules and fiber length, J. Cell Biol. 101 (5,pt2):6a (abstr. 20).Google Scholar
  12. Hirokawa, N., Takemura, R., and Hisanaga, S. J. (1985) Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein, J. Cell Biol. 101:1858–1870.PubMedCrossRefGoogle Scholar
  13. Hollenbeck, P. J., and Cande, W. Z. (1985) Microtubule distribution and reorganization in the first cell cycle of fertilized eggs of Lytechinus pictus, Eur. J. Cell Biol. 37:140–148.PubMedGoogle Scholar
  14. Hollenbeck, P. J., Suprynowicz, F., and Cande, F. Z. (1984) Cytoplasmic dynein-like ATPase crosslinks microtubules in an ATP-sensitive manner, J. Cell Biol. 99:1251–1258.PubMedCrossRefGoogle Scholar
  15. Kiehart, D. P., Mabuchi, L, and Inoue, S. (1982) Evidence that myosin does not contribute to force production in chromosome movement, J. Cell Biol. 94:165–178.PubMedCrossRefGoogle Scholar
  16. Mcintosh, J. R. (1981) Microtubule polarity and interaction in mitotic spindle function, in International Cell Biology, 1980–1981 (H. G. Schweiger, ed.). Springer-Verlag, Berlin, pp. 359–368.CrossRefGoogle Scholar
  17. Nicklas, R. B. (1983) Measurements of the force produced by the mitotic spindle in anaphase, J. Cell Biol. 97:542–548.PubMedCrossRefGoogle Scholar
  18. Nicklas, R. B., and Gordon, G. W. (1985) The total length of spindle microtubules depends on the number of chromosomes present, J. Cell Biol. 100:1–7.PubMedCrossRefGoogle Scholar
  19. Paweletz, N., Mazia, D., and Finze, E-M. (1984) The centrosome cycle of sea urchin eggs, Exp. Cell Res. 152:47–65. Google Scholar
  20. Pickett-Heaps, J. D., and Spurck, T. P. (1982) Studies on kinetochore function in mitosis. 1. The effects of colchicine and cytochalasin on mitosis in the Hantzschia amphioxys, Eur. J. Cell Biol. 28:72–82.Google Scholar
  21. Pickett-Heaps, J. D., and Spurck, T. P. (1982) Studies on kinetochore function in mitosis. II. The effect of metabolic inhibitors on mitosis and cytokinesis in the diatom Hantzschia amphioxis, Eur. J. Cell Biol. 28:83–91.PubMedGoogle Scholar
  22. Pickett-Heaps, J. D., Tippit, D. H., and Porter, K. R. (1982) Rethinking mitosis. Cell 29:729–743.PubMedCrossRefGoogle Scholar
  23. Pickett-Heaps, J., Spurck, T. P., and Tippit, D. (1984) Chromosome motion and the spindle matrix, J. Cell Biol. 99(1, pt 2):1375–1435.CrossRefGoogle Scholar
  24. Piperno, G. (1984) Monoclonal antibodies to dynein subunits reveal the existence of cytoplasmic antigens in sea urchin eggs, J. Cell Biol. 98:1842–1850.PubMedCrossRefGoogle Scholar
  25. Pratt, M. (1984) ATPases in mitotic spindles. Int. Rev. Cytol. 87:83–105.PubMedCrossRefGoogle Scholar
  26. Ring, D., Hubble, R., and Kirschner, M. (1982) Mitosis in a cell with multiple centrioles, J. Cell Biol. 9:549–556.CrossRefGoogle Scholar
  27. Scholey, J. M., Porter, M. E., Grissom, P. M., and Mcintosh, J. R. (1985) Identification of kinesin in sea urchin eggs, and evidence for its localization in mitotic spindle. Nature 318:483–486.PubMedCrossRefGoogle Scholar
  28. White, J. I. (1985) The astral relaxation theory of cytokinesis revisited, Bio Essays 2:267–272.Google Scholar
  29. Wolniak, S. N., Hepler, P. K., and Jackson, W. T. (1983) Ionic changes in the mitotic apparatus at the metaphase/anaphase transition, J. Cell Biol. 96:598–605.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations