Skip to main content
Book cover

Cytoskeleton pp 217–250Cite as

Reorganization of Cytoskeleton

Morphogenesis and Locomotion of Pseudopod-Forming Cells

  • Chapter
  • 171 Accesses

Part of the book series: Cellular Organelles ((CORG))

Abstract

In addition to alteration of protein synthesis, another group of processes leads to reorganization of cytoskeleton, namely, modulations of the assembly and distribution of cytoskeletal elements. These reorganizations are usually reversible; the cell during its life can undergo numerous modulations of the cytoskeleton. Reorganization of the assembly can be combined with alteration of synthesis or occur independently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Bershadsky, A. D., Tint, I. S., Neyfakh, Jr., A. A., and Vasiliev, J. M. (1985) Focal contacts of normal and RSV-transformed quail cells, Exp. Cell Res. 158:433–444.

    Article  PubMed  CAS  Google Scholar 

  • Dlugosz, A. A., Antin, P. B., Nachmias, V. T., and Holtzer, H. (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes, J. Cell Biol. 99:2268–2278.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, G. A. (1980) Mechanisms of fibroblast locomotion, in Cell Adhesion and Motility (A. S. C. Curtis and J. D. Pitts, eds.), Cambridge University Press, Cambridge, United Kingdom, pp. 409–423.

    Google Scholar 

  • Harris, A. (1982) Traction and its relations to contraction in tissue cell locomotion, in Cell Behavior (R. Bellairs, A. Curtis, and G. Dunn, eds.), Cambridge University Press, Cambridge, United Kingdom, pp. 109–134.

    Google Scholar 

  • Lewis, J. C. (1984) Cytoskeleton in platelet function, in Cell and Muscle Motility, Vol. 5, The Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 341–377.

    Google Scholar 

  • Sanger, J. W., Mittal, B., and Sanger, J. M. (1984) Formation of myofibrils in spreading chick cardiac myocytes, Cell Motil. 4:405–416.

    Article  PubMed  CAS  Google Scholar 

  • Stopak, D., and Harris, A. K. (1982) Connective tissue morphogenesis by fibroblast traction. 1. Tissue culture observations. Dev. Biol. 90:383–398.

    Article  PubMed  CAS  Google Scholar 

  • Vasiliev, J. M. (1985) Spreading of non-transformed and transformed cells, Biochim. Biophys. Acta 780:21–65.

    PubMed  CAS  Google Scholar 

  • Vasiliev, J. M., and Gelfand, I. M. (1976) Effects of colcemid on morphogenetic processes and locomotion of fibroblasts, in Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 279–304.

    Google Scholar 

  • Vasiliev, J. M., and Gelfand, I. M. (1981) Neoplastic and Normal Cells in Culture, Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Wang, Y-L. (1984) Reorganization of actin filament bundles in living fibroblasts, J.Cell Biol. 99:1478–1485.

    Article  PubMed  CAS  Google Scholar 

  • Yumura, S., and Fukui, Y. (1985) Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium, Nature 314:194–196.

    Article  PubMed  CAS  Google Scholar 

Additional Readings: General

  • Albrecht-Buehler, G. (1985) Is cytoplasm intelligent too? in Cell and Muscle Motility, Vol. 6 (J. W. Shay, ed.). Plenum Press, New York, pp. 1–21.

    Google Scholar 

  • Bellairs, D., Curtis, A., and Dunn, G., eds. (1982) Cell Behaviour. A Tribute to Michael Ahercrombie, Cambridge University Press, Cambridge, London, New York.

    Google Scholar 

  • Bereiter-Hahn, J. (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheoret. 34:139–148.

    Article  CAS  Google Scholar 

  • Bretscher, M. S. (1984) Endocytosis: Relation to capping and cell locomotion. Science 224:681–686.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, I. K. (1981) Fine-structural and related aspects of nonmuscle-cell motility, in Cell and Muscle Motility (R. M. Dowben and J. W. Shay, eds.). Plenum Press, New York, pp. 135–202.

    Google Scholar 

  • Fleischer, M., and Wohlfarth-Bottermann, K. E. (1975) Correlation between tension, force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands, Cytobiologie 10:339–365.

    Google Scholar 

  • Hay, E. D. (1983) Interaction of embryonic cell surface and cytoskeleton with extracellular matrix, Am. J. Anat. 165:1–12.

    Article  Google Scholar 

  • Lackie, J. M. (1986) Cell Movement and Cell Behaviour, Allen and Unwin, London.

    Book  Google Scholar 

  • Middleton, C. A., and Sharp, J. A. (1984) Cell Locomotion in Vitro, Groom Helm, London, Canberra.

    Google Scholar 

  • Oster, G. F. (1984) On the crawling of cells, J. Embryol. Exp. Morph. 83(suppl):329–364.

    PubMed  Google Scholar 

  • Oster, G., Murray, J. D., and Harris, A. K. (1983) Mechanical aspects of mesenchymal morphogenesis, J. Embryol. Exp. Morph. 78:83–125.

    PubMed  CAS  Google Scholar 

  • Trinkaus, J. (1984) Cells into Organs: Forces That Shape the Embryo, 2nd ed., Prentice-Hall, Engle-wood Cliffs, NJ.

    Google Scholar 

  • Trinkaus, J. P. (1985) Protrusive activity of the cell surface and the initiation of cell movement during morphogenesis, Exp. Biol. Med. 10:130–173.

    Google Scholar 

  • Vasiliev, J. M. (1982) Spreading and locomotion of tissue cells: Factors controlling the distribution of pseudopodia, Phil. Trans. R. Soc. Lond. 299:159–167.

    Article  CAS  Google Scholar 

  • Abercrombie, M. (1980) The crawling movement of metazoan cells,Proc. R. Soc. Lond. (Biol.) 207:129–147.

    Article  Google Scholar 

  • Albrecht-Buehler, G. (1976) Filopodia of spreading 3T3 cells. Do they have a substrate exploring function? J. Cell Biol. 69:275–284.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, L K., and Porter, K. R. (1967) Cytoplasmic fibrils in living cultured cells: A light and electron microscope study, Protoplasma 64:349–380.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W-T. (1979) Induction of spreading during fibroblast movement, J. Cell Biol. 81:684–691.

    Article  PubMed  CAS  Google Scholar 

  • Couchman, J. R., Badley, R. A., and Rees, D. A. (1983) Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesions in chick fibroblasts, J. Muscle Res. Cell Motil 4:647–661.

    Article  PubMed  CAS  Google Scholar 

  • Geiger, B., Avnur, Z., Kreis, T. E., and Schlessinger, J. (1984) The dynamics of cytoskeletal organization in areas of cell contact, in Cell and Muscle Motility, Vol. 5 (J. W. Shay, ed.). Plenum Press, New York, pp. 195–234.

    Google Scholar 

  • Gotlieb, A. I., Heggeness, M. H., Ash, J. F., and Singer, S. J. (1979) Mechanochemical proteins, cell motility and cell-cell contacts: The localization of mechanochemical proteins inside cultured cells at the edge of an in vitro "wound," J. Cell Physiol. 100:563–578.

    Article  PubMed  CAS  Google Scholar 

  • Gotlieb, A. I., May, L. M., Subrahmanyan, L., and Kalnins, V. I. (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells, J. Cell Biol. 91:589–594.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell, F., and Geiger, B. (1986) Interaction of fibronectin-coated beads with attached and spread fibroblasts,Exp. Cell Res. 162:449–461.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A. K., Wild, P., and Stopak, D. (1980) Silicone rubber substrata: A new wrinkle in the study of cell locomotion.Science 208:177–179.

    Article  PubMed  CAS  Google Scholar 

  • Harris, A. K., Stopak, D., and Wild, P. (1981) Fibroblast traction as a mechanism for collagen morphogenesis, Nature 290:249–251.

    Article  PubMed  CAS  Google Scholar 

  • Heath, J. P. (1983) Behavior and structure of the leading lamella in moving fibroblasts. I. Occurrence and centripetal movement of arc-shaped microfilament bundles beneath the dorsal cell surface, J. Cell Sci. 60:331–354.

    PubMed  CAS  Google Scholar 

  • Heath, J. P., and Dunn, G. A. (1978) Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscopy study, J. Cell Sci. 29:197–212.

    PubMed  CAS  Google Scholar 

  • Herman, I. M., Grisona, N. J., and Pollard, T. D. (1981) Relation between cell activity and the distribution of cytoplasmic actin and myosin, J. Cell Biol. 90:84–91.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O., Destree, A. T., and Wagner, D. D. (1982) Relationships between microfilaments, cell-substratum adhesion, and fibronectin, Cold Spring Harbor Symp. Quant. Biol. 46:659–669.

    Article  Google Scholar 

  • Ingram, V. M. (1969) A side view of moving fibroblasts, Nature 222:641–644.

    Article  PubMed  CAS  Google Scholar 

  • Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W., and Wohlfarth-Bottermann, K-E. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tiss. Res. 166:427–443.

    Article  CAS  Google Scholar 

  • Izzard, C. S., and Lochner, L. R. (1976) Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of the technique, J. Cell Sci. 21:129–159.

    PubMed  CAS  Google Scholar 

  • Izzard, C. S., and Lochner, L. R. (1980) Formation of cell-to-substrate contacts during fibroblast motility: An interference-reflexion study,J. Cell Sci. 42:81–116.

    PubMed  CAS  Google Scholar 

  • Kreis, T. E., and Birchmeier, W. (1980) Stress fiber sarcomeres of fibroblasts are contractile. Cell 22:555–561.

    Article  PubMed  CAS  Google Scholar 

  • Kupfer, A., Louvard, D., and Singer, S. J. (1982) The polarization of the Golgi apparatus and micro-tubule-organizing center in cultured fibroblasts at the edge of an experimental wound, Proe. Natl. Acad. Sci. USA 79:2603–2607.

    Article  CAS  Google Scholar 

  • Maher, P. A., Pasquale, E. B., Wang, J. V. J., and Singer, S. J. (1985) Phosphotyrosine-containing proteins are concentrated in focal adhesions and intercellular junctions in normal cells, Proc. Natl. Acad. Sci. USA 82:6576–6580.

    Article  PubMed  CAS  Google Scholar 

  • McAbee, D. D., and Grinnell, F. (1983) Fibronectin-mediated binding and phagocytosis of polystyrene latex beads by baby hamster kidney cell, J. Cell Biol. 97:1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Mittal, A. K., and Bereiter-Hahn, J. (1985) Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx,Cell Motil. 5:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Opas, M., and Kalnins, V. 1. (1985) Spatial distribution of cortical proteins in cells of epithelial sheets, Cell Tiss. Res. 239:451–454.

    Article  CAS  Google Scholar 

  • Owaribe, K., Kodama, R., and Egchi, G. (1981) Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo, J. Cell Biol 90:507–514.

    Article  PubMed  CAS  Google Scholar 

  • Rees, D. A., Couchman, J. R., Smith, C. C., Woods, A., and Wilson, G. (1982) Cell-substratum interactions in the adhesion and locomotion of fibroblasts, Phil. Trans. R. Soc. Lond. B 299:169–176.

    Article  CAS  Google Scholar 

  • Sanger, J. W., Sanger, J. M., and Jockusch, B. M. (1983) Differences in the stress fibers between fibroblasts and epithelial cells, J. Cell Biol. 96:961–969.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger, J., and Geiger, B. (1983) The dynamic interrelationships of actin and vinculin in cultured cells. Cell Motil. 3:399–403.

    Article  PubMed  CAS  Google Scholar 

  • Small, J. V. (1981) Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91:695–705.

    Article  PubMed  CAS  Google Scholar 

  • Small, J. v., and Rinnerthaler, G. (1985) Gytostructural dynamics of contact formation during fibroblast locomotion in vitro, Exp. Biol. Medi. 10:54–68.

    Google Scholar 

  • Small, J. v., Isenberg, G., and Gelis, J. E. (1978) Polarity of actin at the leading edge of cultured cells. Nature 272:638–639.

    Article  PubMed  CAS  Google Scholar 

  • Svitkina, T. M., Neyfakh, A. A., Jr., and Bershadsky, A. D. (1986) Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges, J. Cell Sci. 82:235–248.

    PubMed  CAS  Google Scholar 

  • Turksen, K., Opas, M., Aubin, J. E., and Kalnius, V. I. (1983) Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigmental epithelial (RPE) cells in vitro, Exp. Cell Res. 147:379–391.

    Article  PubMed  CAS  Google Scholar 

  • Wehland, J., Osborn, M., and Weber, K. (1979) Cell-to-substratum contacts in living cells: A direct correlation between interference-reflexion and indirect immunofluorescence microscopy using antibodies against actin and α-actinin, J. Cell Sci. 37:257–273.

    CAS  Google Scholar 

Ameboid cells

  • Amato, P. A., Unanue, E. R., and Taylor, L. (1983) Distribution of actin in spreading macrophages: A comparative study on living and fixed cells, J. Cell Biol. 96:750–761.

    Article  PubMed  CAS  Google Scholar 

  • Fechheimer, M., and Zigmond, S. H. (1983) Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 3:349–361.

    Article  PubMed  CAS  Google Scholar 

  • Howard, T. H., and Oresajo, C. O. (1985) The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution and the shape of neutrophils, J. Cell Biol. 101:1078–1085.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, V. P., Hovi, T., Vartio, T., Badley, R. A., and Virtanen, I. (1982) Reorganization of cytoskeleton and contractile elements during transition of human monocytes into adherent macrophages, Lab. Invest. 47:391–399.

    PubMed  CAS  Google Scholar 

  • Nemere, I., Kupfer, A., and Singer, S. J. (1985) Reorientation of the Golgi apparatus and the micro-tubule-organizing center inside macrophages subjected to a chemotactic gradient, Cell Motil. 5:17–29.

    Article  PubMed  CAS  Google Scholar 

  • Preston, T. M. (1985) A prominent microtubule cytoskeleton in acanthamoeba.Cell Biol. Int. Rep. 9:307–315.

    Article  PubMed  CAS  Google Scholar 

  • Rubino, S., Fighetti, M., linger, E., and Cappuccinelli, P. (1984) Location of actin, myosin, and microtubular structures during directed locomotion of Dictyostelium amebae, J. Cell Biol. 98:382–390.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. L., and Condeelis, J. S. (1979) Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytol. 56:57–144.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D. L., Blinks, J. R., and Reynolds, G. (1980) Contractile basis of ameboid movement. VIII. Aequorin luminescence during ameboid movement, endocytosis, and capping, J. Cell Biol. 86:599–607.

    Article  PubMed  CAS  Google Scholar 

  • Valerius, N. H., Stendahl, O., Hartwig, J. H., and Stossel, T. P. (1981) Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis, Cell 24:195–202.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, P. J., Wersto, R. P., Packman, C. H., and Lichtman, M. A. (1984) Chemotactic peptide-induced changes in neutrophilactin conformation, J. Cell Biol. 99:1060–1065.

    Article  PubMed  CAS  Google Scholar 

  • Wehland, J., Weber, K., Gawlitta, W., and Stockem, W. (1979) Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure of Amoeba proteus. An attempt to explain amoeboid movement, Cell Tiss. Res. 199:353–372.

    Article  CAS  Google Scholar 

  • Yumura, S., Mori, H., and Fukui, Y. (1984) Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence, J. Cell Biol. 99:894–899.

    Article  PubMed  CAS  Google Scholar 

Axonal growth

  • Bray, D. (1979) Mechanical tension produced by nerve cells in tissue culture, J. Cell Sci. 37:391–410.

    PubMed  CAS  Google Scholar 

  • Bray, D., and Chapman, K. (1985) Analysis of microspike movements on the neuronal growth cone, J. Neurosci. 5:3204–3213.

    PubMed  CAS  Google Scholar 

  • Bray, D., and Gilbert, D. (1981) Cytoskeletal elements in neurons, Ann. Rev. Neurosci. 4:505–523.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, R. G. (1910) The outgrowth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9:787–846.

    Article  Google Scholar 

  • Katz, M. J., George, E. B., and Gilbert, L. J. (1984) Axonal elongation as a stochastic walk. Cell Motil 4:351–370.

    Article  PubMed  CAS  Google Scholar 

  • Letourneau, P. C. (1981) Immunocytochemical evidence for co-localization in nerve growth cones of actin and myosin and their relationship to cell-substratum adhesions, Dev. Biol. 85:113–122.

    CAS  Google Scholar 

  • Letourneau, P. C. (1983) Axonal growth and guidance. Trends Neur. Sci. (TINS] 6:451–455.

    Article  Google Scholar 

  • Marsh, L., and Letourneau, P. C. (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B., J. Cell Biol. 99:2041–2047.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, G., and Bray, D. (1977) Movement and extension of isolated growth cones, Exp. Cell Res. 104:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, F. (1981) Guiding growth cones, Cell 24:279–280.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, F., and Magendantz, M. (1981) Cytochalasin separates microtubule disassembly from loss of asymmetric morphology, J. Cell Biol 89:157–161.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K. M., Spooner, B. S., and Wessells, N. K. (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49:614–635.

    Article  PubMed  CAS  Google Scholar 

Other systems

  • Allen, R. D., Zacharski, L. R., Widirstky, S. T., Rosenstein, R., Zaitlin, L. M., and Burgess, D. R. (1979) Transformation and motility of human platelets. Details of the shape change and release reaction observed by optical and electron microscopy, J. Cell Biol. 83:126–142.

    Article  PubMed  CAS  Google Scholar 

  • Edds, K. T. (1984) Differential distribution and function of microtubules and microfilaments in sea urchin coelomocytes. Cell Motil. 4:269–281.

    Article  CAS  Google Scholar 

  • Fay, F. S., Fujiwara, K., Rees, D. D., and Fogarty, K. E. (1983) Distribution of a-actinin in single isolated smooth muscle cells, J. Cell Biol. 96:783–795.

    Article  PubMed  CAS  Google Scholar 

  • Lehtonen, E., Lehto, V-P., Badley, R. A., and Virtanen, I. (1983) Formation of vinculin plaques precedes other cytoskeletal changes during retinoic acid-induced teratocarcinoma cell differentiation, Exp. Cell Res. 144:191–197.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J. C., White, M. S., Prater, T., Porter, K. R., and Steele, R. J. (1983) Three-dimensional organization of the platelet cytoskeleton during adhesion in vitro: Observations on human and nonhuman primate cells. Cell Motil. 3:589–608.

    Article  PubMed  CAS  Google Scholar 

  • Marchisio, P. C., Cirillo, D., Naldini, L., Primavera, M. V., Teti, A., and Zambonin-Zallone, A. (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures, J. Cell Biol 99:1696–1705.

    Article  PubMed  CAS  Google Scholar 

  • Naib-Majani, W., Stockem, W., Wohlfarth-Bottermann, K-E., Osborn, M., and Weber, K. (1982) Immunocytochemistry of the acellular slime mold Physarum polycephalum. 11. Spatial organization of cytoplasmic actin, J. Cell Biol. 28:103–114.

    CAS  Google Scholar 

  • Small, J. V. (1985) Geometry of actin-membrane attachments in the smooth muscle cell: The localizations of vinculin and α-actinin, EMBO J. 4:45–49.

    PubMed  CAS  Google Scholar 

  • Tilney, L. G., and Inoue, S. (1985) Acrosomal reaction of the Thyone sperm. III. The relationship between actin assembly and water influx during the extension of the acrosomal process, J. Cell Biol. 100:1273–1283.

    Article  PubMed  CAS  Google Scholar 

  • White, G. E., Gimbrone, M. A., Jr., and Fujiwara K. (1983) Factors influencing the expression of stress fibers in vascular endothelial cells in situ, J. Cell Biol. 97:416–424.

    Article  PubMed  CAS  Google Scholar 

  • Wong, A. J., Pollard, T. D., and Herman, I. M. (1983) Actin filament stress fibers in vascular endothelial cells in vivo, Science 219:867–869.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Bershadsky, A.D., Vasiliev, J.M. (1988). Reorganization of Cytoskeleton. In: Cytoskeleton. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5278-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5278-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5280-8

  • Online ISBN: 978-1-4684-5278-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics