Cytoskeleton pp 217-250 | Cite as

Reorganization of Cytoskeleton

Morphogenesis and Locomotion of Pseudopod-Forming Cells
  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)


In addition to alteration of protein synthesis, another group of processes leads to reorganization of cytoskeleton, namely, modulations of the assembly and distribution of cytoskeletal elements. These reorganizations are usually reversible; the cell during its life can undergo numerous modulations of the cytoskeleton. Reorganization of the assembly can be combined with alteration of synthesis or occur independently.


Actin Filament Growth Cone Stress Fiber Actin Network Focal Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bershadsky, A. D., Tint, I. S., Neyfakh, Jr., A. A., and Vasiliev, J. M. (1985) Focal contacts of normal and RSV-transformed quail cells, Exp. Cell Res. 158:433–444.PubMedCrossRefGoogle Scholar
  2. Dlugosz, A. A., Antin, P. B., Nachmias, V. T., and Holtzer, H. (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes, J. Cell Biol. 99:2268–2278.PubMedCrossRefGoogle Scholar
  3. Dunn, G. A. (1980) Mechanisms of fibroblast locomotion, in Cell Adhesion and Motility (A. S. C. Curtis and J. D. Pitts, eds.), Cambridge University Press, Cambridge, United Kingdom, pp. 409–423.Google Scholar
  4. Harris, A. (1982) Traction and its relations to contraction in tissue cell locomotion, in Cell Behavior (R. Bellairs, A. Curtis, and G. Dunn, eds.), Cambridge University Press, Cambridge, United Kingdom, pp. 109–134.Google Scholar
  5. Lewis, J. C. (1984) Cytoskeleton in platelet function, in Cell and Muscle Motility, Vol. 5, The Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 341–377.Google Scholar
  6. Sanger, J. W., Mittal, B., and Sanger, J. M. (1984) Formation of myofibrils in spreading chick cardiac myocytes, Cell Motil. 4:405–416.PubMedCrossRefGoogle Scholar
  7. Stopak, D., and Harris, A. K. (1982) Connective tissue morphogenesis by fibroblast traction. 1. Tissue culture observations. Dev. Biol. 90:383–398.PubMedCrossRefGoogle Scholar
  8. Vasiliev, J. M. (1985) Spreading of non-transformed and transformed cells, Biochim. Biophys. Acta 780:21–65.PubMedGoogle Scholar
  9. Vasiliev, J. M., and Gelfand, I. M. (1976) Effects of colcemid on morphogenetic processes and locomotion of fibroblasts, in Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 279–304.Google Scholar
  10. Vasiliev, J. M., and Gelfand, I. M. (1981) Neoplastic and Normal Cells in Culture, Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  11. Wang, Y-L. (1984) Reorganization of actin filament bundles in living fibroblasts, J.Cell Biol. 99:1478–1485.PubMedCrossRefGoogle Scholar
  12. Yumura, S., and Fukui, Y. (1985) Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium, Nature 314:194–196.PubMedCrossRefGoogle Scholar

Additional Readings: General

  1. Albrecht-Buehler, G. (1985) Is cytoplasm intelligent too? in Cell and Muscle Motility, Vol. 6 (J. W. Shay, ed.). Plenum Press, New York, pp. 1–21.Google Scholar
  2. Bellairs, D., Curtis, A., and Dunn, G., eds. (1982) Cell Behaviour. A Tribute to Michael Ahercrombie, Cambridge University Press, Cambridge, London, New York.Google Scholar
  3. Bereiter-Hahn, J. (1985) Architecture of tissue cells. The structural basis which determines shape and locomotion of cells. Acta Biotheoret. 34:139–148.CrossRefGoogle Scholar
  4. Bretscher, M. S. (1984) Endocytosis: Relation to capping and cell locomotion. Science 224:681–686.PubMedCrossRefGoogle Scholar
  5. Buckley, I. K. (1981) Fine-structural and related aspects of nonmuscle-cell motility, in Cell and Muscle Motility (R. M. Dowben and J. W. Shay, eds.). Plenum Press, New York, pp. 135–202.Google Scholar
  6. Fleischer, M., and Wohlfarth-Bottermann, K. E. (1975) Correlation between tension, force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands, Cytobiologie 10:339–365.Google Scholar
  7. Hay, E. D. (1983) Interaction of embryonic cell surface and cytoskeleton with extracellular matrix, Am. J. Anat. 165:1–12.CrossRefGoogle Scholar
  8. Lackie, J. M. (1986) Cell Movement and Cell Behaviour, Allen and Unwin, London.CrossRefGoogle Scholar
  9. Middleton, C. A., and Sharp, J. A. (1984) Cell Locomotion in Vitro, Groom Helm, London, Canberra.Google Scholar
  10. Oster, G. F. (1984) On the crawling of cells, J. Embryol. Exp. Morph. 83(suppl):329–364.PubMedGoogle Scholar
  11. Oster, G., Murray, J. D., and Harris, A. K. (1983) Mechanical aspects of mesenchymal morphogenesis, J. Embryol. Exp. Morph. 78:83–125.PubMedGoogle Scholar
  12. Trinkaus, J. (1984) Cells into Organs: Forces That Shape the Embryo, 2nd ed., Prentice-Hall, Engle-wood Cliffs, NJ.Google Scholar
  13. Trinkaus, J. P. (1985) Protrusive activity of the cell surface and the initiation of cell movement during morphogenesis, Exp. Biol. Med. 10:130–173.Google Scholar
  14. Vasiliev, J. M. (1982) Spreading and locomotion of tissue cells: Factors controlling the distribution of pseudopodia, Phil. Trans. R. Soc. Lond. 299:159–167.CrossRefGoogle Scholar
  15. Abercrombie, M. (1980) The crawling movement of metazoan cells,Proc. R. Soc. Lond. (Biol.) 207:129–147.CrossRefGoogle Scholar
  16. Albrecht-Buehler, G. (1976) Filopodia of spreading 3T3 cells. Do they have a substrate exploring function? J. Cell Biol. 69:275–284.PubMedCrossRefGoogle Scholar
  17. Buckley, L K., and Porter, K. R. (1967) Cytoplasmic fibrils in living cultured cells: A light and electron microscope study, Protoplasma 64:349–380.PubMedCrossRefGoogle Scholar
  18. Chen, W-T. (1979) Induction of spreading during fibroblast movement, J. Cell Biol. 81:684–691.PubMedCrossRefGoogle Scholar
  19. Couchman, J. R., Badley, R. A., and Rees, D. A. (1983) Redistribution of microfilament-associated proteins during the formation of focal contacts and adhesions in chick fibroblasts, J. Muscle Res. Cell Motil 4:647–661.PubMedCrossRefGoogle Scholar
  20. Geiger, B., Avnur, Z., Kreis, T. E., and Schlessinger, J. (1984) The dynamics of cytoskeletal organization in areas of cell contact, in Cell and Muscle Motility, Vol. 5 (J. W. Shay, ed.). Plenum Press, New York, pp. 195–234.Google Scholar
  21. Gotlieb, A. I., Heggeness, M. H., Ash, J. F., and Singer, S. J. (1979) Mechanochemical proteins, cell motility and cell-cell contacts: The localization of mechanochemical proteins inside cultured cells at the edge of an in vitro "wound," J. Cell Physiol. 100:563–578.PubMedCrossRefGoogle Scholar
  22. Gotlieb, A. I., May, L. M., Subrahmanyan, L., and Kalnins, V. I. (1981) Distribution of microtubule organizing centers in migrating sheets of endothelial cells, J. Cell Biol. 91:589–594.PubMedCrossRefGoogle Scholar
  23. Grinnell, F., and Geiger, B. (1986) Interaction of fibronectin-coated beads with attached and spread fibroblasts,Exp. Cell Res. 162:449–461.PubMedCrossRefGoogle Scholar
  24. Harris, A. K., Wild, P., and Stopak, D. (1980) Silicone rubber substrata: A new wrinkle in the study of cell locomotion.Science 208:177–179.PubMedCrossRefGoogle Scholar
  25. Harris, A. K., Stopak, D., and Wild, P. (1981) Fibroblast traction as a mechanism for collagen morphogenesis, Nature 290:249–251.PubMedCrossRefGoogle Scholar
  26. Heath, J. P. (1983) Behavior and structure of the leading lamella in moving fibroblasts. I. Occurrence and centripetal movement of arc-shaped microfilament bundles beneath the dorsal cell surface, J. Cell Sci. 60:331–354.PubMedGoogle Scholar
  27. Heath, J. P., and Dunn, G. A. (1978) Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscopy study, J. Cell Sci. 29:197–212.PubMedGoogle Scholar
  28. Herman, I. M., Grisona, N. J., and Pollard, T. D. (1981) Relation between cell activity and the distribution of cytoplasmic actin and myosin, J. Cell Biol. 90:84–91.PubMedCrossRefGoogle Scholar
  29. Hynes, R. O., Destree, A. T., and Wagner, D. D. (1982) Relationships between microfilaments, cell-substratum adhesion, and fibronectin, Cold Spring Harbor Symp. Quant. Biol. 46:659–669.CrossRefGoogle Scholar
  30. Ingram, V. M. (1969) A side view of moving fibroblasts, Nature 222:641–644.PubMedCrossRefGoogle Scholar
  31. Isenberg, G., Rathke, P. C., Hülsmann, N., Franke, W. W., and Wohlfarth-Bottermann, K-E. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells. Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tiss. Res. 166:427–443.CrossRefGoogle Scholar
  32. Izzard, C. S., and Lochner, L. R. (1976) Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of the technique, J. Cell Sci. 21:129–159.PubMedGoogle Scholar
  33. Izzard, C. S., and Lochner, L. R. (1980) Formation of cell-to-substrate contacts during fibroblast motility: An interference-reflexion study,J. Cell Sci. 42:81–116.PubMedGoogle Scholar
  34. Kreis, T. E., and Birchmeier, W. (1980) Stress fiber sarcomeres of fibroblasts are contractile. Cell 22:555–561.PubMedCrossRefGoogle Scholar
  35. Kupfer, A., Louvard, D., and Singer, S. J. (1982) The polarization of the Golgi apparatus and micro-tubule-organizing center in cultured fibroblasts at the edge of an experimental wound, Proe. Natl. Acad. Sci. USA 79:2603–2607.CrossRefGoogle Scholar
  36. Maher, P. A., Pasquale, E. B., Wang, J. V. J., and Singer, S. J. (1985) Phosphotyrosine-containing proteins are concentrated in focal adhesions and intercellular junctions in normal cells, Proc. Natl. Acad. Sci. USA 82:6576–6580.PubMedCrossRefGoogle Scholar
  37. McAbee, D. D., and Grinnell, F. (1983) Fibronectin-mediated binding and phagocytosis of polystyrene latex beads by baby hamster kidney cell, J. Cell Biol. 97:1515–1523.PubMedCrossRefGoogle Scholar
  38. Mittal, A. K., and Bereiter-Hahn, J. (1985) Ionic control of locomotion and shape of epithelial cells: I. Role of calcium influx,Cell Motil. 5:123–136.PubMedCrossRefGoogle Scholar
  39. Opas, M., and Kalnins, V. 1. (1985) Spatial distribution of cortical proteins in cells of epithelial sheets, Cell Tiss. Res. 239:451–454.CrossRefGoogle Scholar
  40. Owaribe, K., Kodama, R., and Egchi, G. (1981) Demonstration of contractility of circumferential actin bundles and its morphogenetic significance in pigmented epithelium in vitro and in vivo, J. Cell Biol 90:507–514.PubMedCrossRefGoogle Scholar
  41. Rees, D. A., Couchman, J. R., Smith, C. C., Woods, A., and Wilson, G. (1982) Cell-substratum interactions in the adhesion and locomotion of fibroblasts, Phil. Trans. R. Soc. Lond. B 299:169–176.CrossRefGoogle Scholar
  42. Sanger, J. W., Sanger, J. M., and Jockusch, B. M. (1983) Differences in the stress fibers between fibroblasts and epithelial cells, J. Cell Biol. 96:961–969.PubMedCrossRefGoogle Scholar
  43. Schlessinger, J., and Geiger, B. (1983) The dynamic interrelationships of actin and vinculin in cultured cells. Cell Motil. 3:399–403.PubMedCrossRefGoogle Scholar
  44. Small, J. V. (1981) Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91:695–705.PubMedCrossRefGoogle Scholar
  45. Small, J. v., and Rinnerthaler, G. (1985) Gytostructural dynamics of contact formation during fibroblast locomotion in vitro, Exp. Biol. Medi. 10:54–68.Google Scholar
  46. Small, J. v., Isenberg, G., and Gelis, J. E. (1978) Polarity of actin at the leading edge of cultured cells. Nature 272:638–639.PubMedCrossRefGoogle Scholar
  47. Svitkina, T. M., Neyfakh, A. A., Jr., and Bershadsky, A. D. (1986) Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges, J. Cell Sci. 82:235–248.PubMedGoogle Scholar
  48. Turksen, K., Opas, M., Aubin, J. E., and Kalnius, V. I. (1983) Microtubules, microfilaments and adhesion patterns in differentiating chick retinal pigmental epithelial (RPE) cells in vitro, Exp. Cell Res. 147:379–391.PubMedCrossRefGoogle Scholar
  49. Wehland, J., Osborn, M., and Weber, K. (1979) Cell-to-substratum contacts in living cells: A direct correlation between interference-reflexion and indirect immunofluorescence microscopy using antibodies against actin and α-actinin, J. Cell Sci. 37:257–273.Google Scholar

Ameboid cells

  1. Amato, P. A., Unanue, E. R., and Taylor, L. (1983) Distribution of actin in spreading macrophages: A comparative study on living and fixed cells, J. Cell Biol. 96:750–761.PubMedCrossRefGoogle Scholar
  2. Fechheimer, M., and Zigmond, S. H. (1983) Changes in cytoskeletal proteins of polymorphonuclear leukocytes induced by chemotactic peptides. Cell Motil. 3:349–361.PubMedCrossRefGoogle Scholar
  3. Howard, T. H., and Oresajo, C. O. (1985) The kinetics of chemotactic peptide-induced change in F-actin content, F-actin distribution and the shape of neutrophils, J. Cell Biol. 101:1078–1085.PubMedCrossRefGoogle Scholar
  4. Lehto, V. P., Hovi, T., Vartio, T., Badley, R. A., and Virtanen, I. (1982) Reorganization of cytoskeleton and contractile elements during transition of human monocytes into adherent macrophages, Lab. Invest. 47:391–399.PubMedGoogle Scholar
  5. Nemere, I., Kupfer, A., and Singer, S. J. (1985) Reorientation of the Golgi apparatus and the micro-tubule-organizing center inside macrophages subjected to a chemotactic gradient, Cell Motil. 5:17–29.PubMedCrossRefGoogle Scholar
  6. Preston, T. M. (1985) A prominent microtubule cytoskeleton in acanthamoeba.Cell Biol. Int. Rep. 9:307–315.PubMedCrossRefGoogle Scholar
  7. Rubino, S., Fighetti, M., linger, E., and Cappuccinelli, P. (1984) Location of actin, myosin, and microtubular structures during directed locomotion of Dictyostelium amebae, J. Cell Biol. 98:382–390.PubMedCrossRefGoogle Scholar
  8. Taylor, D. L., and Condeelis, J. S. (1979) Cytoplasmic structure and contractility in amoeboid cells, Int. Rev. Cytol. 56:57–144.PubMedCrossRefGoogle Scholar
  9. Taylor, D. L., Blinks, J. R., and Reynolds, G. (1980) Contractile basis of ameboid movement. VIII. Aequorin luminescence during ameboid movement, endocytosis, and capping, J. Cell Biol. 86:599–607.PubMedCrossRefGoogle Scholar
  10. Valerius, N. H., Stendahl, O., Hartwig, J. H., and Stossel, T. P. (1981) Distribution of actin-binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis, Cell 24:195–202.PubMedCrossRefGoogle Scholar
  11. Wallace, P. J., Wersto, R. P., Packman, C. H., and Lichtman, M. A. (1984) Chemotactic peptide-induced changes in neutrophilactin conformation, J. Cell Biol. 99:1060–1065.PubMedCrossRefGoogle Scholar
  12. Wehland, J., Weber, K., Gawlitta, W., and Stockem, W. (1979) Effects of the actin-binding protein DNAase I on cytoplasmic streaming and ultrastructure of Amoeba proteus. An attempt to explain amoeboid movement, Cell Tiss. Res. 199:353–372.CrossRefGoogle Scholar
  13. Yumura, S., Mori, H., and Fukui, Y. (1984) Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence, J. Cell Biol. 99:894–899.PubMedCrossRefGoogle Scholar

Axonal growth

  1. Bray, D. (1979) Mechanical tension produced by nerve cells in tissue culture, J. Cell Sci. 37:391–410.PubMedGoogle Scholar
  2. Bray, D., and Chapman, K. (1985) Analysis of microspike movements on the neuronal growth cone, J. Neurosci. 5:3204–3213.PubMedGoogle Scholar
  3. Bray, D., and Gilbert, D. (1981) Cytoskeletal elements in neurons, Ann. Rev. Neurosci. 4:505–523.PubMedCrossRefGoogle Scholar
  4. Harrison, R. G. (1910) The outgrowth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9:787–846.CrossRefGoogle Scholar
  5. Katz, M. J., George, E. B., and Gilbert, L. J. (1984) Axonal elongation as a stochastic walk. Cell Motil 4:351–370.PubMedCrossRefGoogle Scholar
  6. Letourneau, P. C. (1981) Immunocytochemical evidence for co-localization in nerve growth cones of actin and myosin and their relationship to cell-substratum adhesions, Dev. Biol. 85:113–122.Google Scholar
  7. Letourneau, P. C. (1983) Axonal growth and guidance. Trends Neur. Sci. (TINS] 6:451–455.CrossRefGoogle Scholar
  8. Marsh, L., and Letourneau, P. C. (1984) Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B., J. Cell Biol. 99:2041–2047.PubMedCrossRefGoogle Scholar
  9. Shaw, G., and Bray, D. (1977) Movement and extension of isolated growth cones, Exp. Cell Res. 104:55–62.PubMedCrossRefGoogle Scholar
  10. Solomon, F. (1981) Guiding growth cones, Cell 24:279–280.PubMedCrossRefGoogle Scholar
  11. Solomon, F., and Magendantz, M. (1981) Cytochalasin separates microtubule disassembly from loss of asymmetric morphology, J. Cell Biol 89:157–161.PubMedCrossRefGoogle Scholar
  12. Yamada, K. M., Spooner, B. S., and Wessells, N. K. (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49:614–635.PubMedCrossRefGoogle Scholar

Other systems

  1. Allen, R. D., Zacharski, L. R., Widirstky, S. T., Rosenstein, R., Zaitlin, L. M., and Burgess, D. R. (1979) Transformation and motility of human platelets. Details of the shape change and release reaction observed by optical and electron microscopy, J. Cell Biol. 83:126–142.PubMedCrossRefGoogle Scholar
  2. Edds, K. T. (1984) Differential distribution and function of microtubules and microfilaments in sea urchin coelomocytes. Cell Motil. 4:269–281.CrossRefGoogle Scholar
  3. Fay, F. S., Fujiwara, K., Rees, D. D., and Fogarty, K. E. (1983) Distribution of a-actinin in single isolated smooth muscle cells, J. Cell Biol. 96:783–795.PubMedCrossRefGoogle Scholar
  4. Lehtonen, E., Lehto, V-P., Badley, R. A., and Virtanen, I. (1983) Formation of vinculin plaques precedes other cytoskeletal changes during retinoic acid-induced teratocarcinoma cell differentiation, Exp. Cell Res. 144:191–197.PubMedCrossRefGoogle Scholar
  5. Lewis, J. C., White, M. S., Prater, T., Porter, K. R., and Steele, R. J. (1983) Three-dimensional organization of the platelet cytoskeleton during adhesion in vitro: Observations on human and nonhuman primate cells. Cell Motil. 3:589–608.PubMedCrossRefGoogle Scholar
  6. Marchisio, P. C., Cirillo, D., Naldini, L., Primavera, M. V., Teti, A., and Zambonin-Zallone, A. (1984) Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures, J. Cell Biol 99:1696–1705.PubMedCrossRefGoogle Scholar
  7. Naib-Majani, W., Stockem, W., Wohlfarth-Bottermann, K-E., Osborn, M., and Weber, K. (1982) Immunocytochemistry of the acellular slime mold Physarum polycephalum. 11. Spatial organization of cytoplasmic actin, J. Cell Biol. 28:103–114.Google Scholar
  8. Small, J. V. (1985) Geometry of actin-membrane attachments in the smooth muscle cell: The localizations of vinculin and α-actinin, EMBO J. 4:45–49.PubMedGoogle Scholar
  9. Tilney, L. G., and Inoue, S. (1985) Acrosomal reaction of the Thyone sperm. III. The relationship between actin assembly and water influx during the extension of the acrosomal process, J. Cell Biol. 100:1273–1283.PubMedCrossRefGoogle Scholar
  10. White, G. E., Gimbrone, M. A., Jr., and Fujiwara K. (1983) Factors influencing the expression of stress fibers in vascular endothelial cells in situ, J. Cell Biol. 97:416–424.PubMedCrossRefGoogle Scholar
  11. Wong, A. J., Pollard, T. D., and Herman, I. M. (1983) Actin filament stress fibers in vascular endothelial cells in vivo, Science 219:867–869.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations