Advertisement

Cytoskeleton pp 203-216 | Cite as

Regulation of Synthesis of Cytoskeletal Proteins

  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)

Abstract

As discussed in Chapter 5, the cytoskeleton regulates the organization of cytoplasm. At the same time, the state of the cytoskeleton is continuously regulated by a complex of controlling cellular mechanisms. These regulations are essential both for maintenance of the steady state of the cytoskeleton and for reorganization of the cytoskeleton which can occur in the course of cell life. Many cells, e.g., locomoting pseudopod-forming cells, continuously reorganize their cytoskeleton, so that it is not always possible to draw a sharp boundary between regulations of steady state and of reorganization. Regulation of the state of the cytoskeleton involves two processes: (1) regulation of the expression of genes coding cytoskeletal proteins and of the synthesis of these proteins, and (2) regulations of the state of assembly of the cytoskeletal proteins and of the distribution of cytoskeletal elements.

Keywords

Cold Spring Harbor Cytoskeletal Protein Cold Spring Harbor Laboratory Tubulin Gene Fast Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ben-Ze’ev, A. (1984) Cell-cell interaction and cell-shape-related control of intermediate filament protein syntheses, in Molecular Biology of Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 435–444.Google Scholar
  2. Fulton, A. B., and Wan, K. M. (1983) Many cytoskeletal proteins associated with the HeLa cytoskeleton during translation in vitro, Cell 32:619–625.PubMedCrossRefGoogle Scholar
  3. Giudice, G. J., and Fuchs, E. (1987) The transfection of epidermal keratin genes into fibroblasts and simple epithelial cells: Evidence for inducing a type I keratin by a type II gene, Cell 48:453–463.PubMedCrossRefGoogle Scholar
  4. Lai, E. I., Remillarg, S. P., and Fulton, C. (1984) Tubulin and actin: Yin-yang gene expression during Naegleria differentiation, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 257–266.Google Scholar
  5. Lazarides, E. (1984) Assembly and morphogenesis of the avian erythrocyte cytoskeleton, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 131–150.Google Scholar
  6. Murphy, D. B., and Wallis, K. T. (1983) Brain and erythrocyte microtubules from chicken contain different jö-tubulin polypeptides, J. Biol. Chem. 258:7870–7875.PubMedGoogle Scholar
  7. Periasamy, M., Strehler, Ec E., Garfinkel, L. L, Gubits, R. M., Ruiz-Opazo, N., and Nadal-Ginard, B. (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing, J. Biol. Chem. 259:13595–13604.PubMedGoogle Scholar

Additional Readings

  1. Alexandrov, V. Y. (1981) Stimulation of flagella recovery in Chlamydomonas eugametos after heat injury, Arch. Protintenk. 124:345–352.CrossRefGoogle Scholar
  2. Baker, E. J., Schloss, J. A., and Rosendaum, J. L. (1984) Rapid changes in tubulin RNA synthesis and stability induced by deflagellation in Chlamydomonas, J. Cell Biol. 99:2074–2081.PubMedCrossRefGoogle Scholar
  3. Ben-Ze’ev, A., Farmer, S. R., and Penman, S. (1979) Mechanisms regulating tubulin synthesis in cultured mammalian cells. Cell 17:319–325.PubMedCrossRefGoogle Scholar
  4. Breitbart, R. E., Nguyen, H. T., Medford, R. M., Destree, A. T., Mahdavi, V., and Nadal-Ginard, B. (1985) Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene, Cell 41:67–82.PubMedCrossRefGoogle Scholar
  5. Brunke, K., Anthony, J., Kalish, F., Stenberg, E., and Weeks, D. (1984) Coordinate expression of the four tubulin genes in Chlamydomonas, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 367–379.Google Scholar
  6. Caron, J. M., Jones, A. L., and Kirschner, M. W. (1985) Autoregulation of tubulin synthesis in hepatocytes and fibroblasts, J. Cell. Biol. 101:1763–1772.PubMedCrossRefGoogle Scholar
  7. Caron, J. M., Jones, A. L., Rail, L. B., and Kirschner, M. W. (1985) Autoregulation of tubulin synthesis in enucleated cells. Nature 317:648–651.PubMedCrossRefGoogle Scholar
  8. Carrino, J. J., and Laffler, T. G. (1985) The effects of heat shock on the cell cycle regulation of tubulin expression inPhysarum polycephalum, J. Cell Biol. 100:642–647.PubMedCrossRefGoogle Scholar
  9. Cleveland, D. W., and Havercroft, J. C. (1983) Is apparent autoregulatory control of tubuHn synthesis nontranscriptionally regulated? J. Cell Biol. 97:919–924.PubMedCrossRefGoogle Scholar
  10. Cleveland, D. W., and Sullivan, K. F. (1985) Molecular biology and genetics of tubulin, Annu. Rev. Biochem. 54:331–365.PubMedCrossRefGoogle Scholar
  11. Cleveland, D. W., Lopata, M. A., Sherline, P., and Kirschner, M. W. (1981) Unpolymerized tubulin modulates the level of tubulin mRNAs, Cell 25:537–546.PubMedCrossRefGoogle Scholar
  12. Cleveland, D. W., Pittenger, M. F., and Feramisco, J. R. (1983) Elevation of tubulin levels by microinjection suppresses new tubulin synthesis,Nature 305:738–740.PubMedCrossRefGoogle Scholar
  13. Drubin, D. G., Caput, D., and Kirschner, M. W. (1984) Studies on the expression of the microtu- bule-associated protein, tau, during mouse brain development, with newly isolated complementary DNA probes, J. Cell Biol. 98:1090–1097.PubMedCrossRefGoogle Scholar
  14. Farmer, S. R., Wan, K. M., Ben-Ze’ev, A., and Penman, S. (1983) Regulation of actin mRNA levels and translation responds to changes in cell configuration, Mol. Cell Biol. 3:182–190.PubMedGoogle Scholar
  15. Farmer, S. R., Bond, J. F., Robinson, L. S., Mbangkollo, D., Fenton, M. J., and Berkowitz, E. M. (1984) Differential expression of the rat β-tubulin multigene family, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 333–342.Google Scholar
  16. Ginzburg, I., and Littauer, U. Z. (1984) Expression and cellular regulation of microtubule proteins, in MoJecuJar Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 357–366.Google Scholar
  17. Glass, J. R., De Witt, R. G., and Cress, A. E. (1985) Rapid loss of stress fibers in Chinese hamster ovary cells after hyperthermia. Cancer Res. 45:258–262.PubMedGoogle Scholar
  18. Gulick, J., Kropp, K., and Robbins, J. (1985) The structure of two fast-white myosin heavy chain promoters. A comparative study, J. Biol. Chem. 260:14513–14520.PubMedGoogle Scholar
  19. Guttman, S. D., Glover, C. V. C., Allis, C. D., and Gorovsky, M. A. (1980) Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell 22:299–307.PubMedCrossRefGoogle Scholar
  20. Hastings, K. E. M., Bucher, E. A., and Emerson, C. P., Jr. (1985) Generation of troponin T isoforms by alternative RNA splicing in avian skeletal muscle. Conserved and divergent features in birds and mammals, J. Biol. Chem. 260:13699–13703.PubMedGoogle Scholar
  21. Havercroft, J. C., and Cleveland, D. W. (1984) Programmed expression of iö-tubulin genes during development and differentiation of the chicken, J. Cell Biol. 99:1927–1935.PubMedCrossRefGoogle Scholar
  22. Kemphues, K. J., Raff, E. C., Raff, R. A., and Kauffman, T. C. (1980) Mutation in a testis-specific β-tubulin in Drosophila: Analysis of its effects on meiosis and map location of the gene. Cell 21:445–451.PubMedCrossRefGoogle Scholar
  23. Lewis, S. A., Lee, M. C-S., and Cowan, N. J. (1985) Five mouse tubulin isotypes and their regulated expression during development, J. Cell Biol. 101:852–861.PubMedCrossRefGoogle Scholar
  24. L’Hernault, S. W., and Rosenbaum, J. L. (1985) Reversal of the posttranslational modification on Chlamydomonas flagellar β-tubulin occurs during flagellar resorption, J. Cell Biol. 100:457–462.PubMedCrossRefGoogle Scholar
  25. Lompre, A-M., Nadal-Ginard, B., and Mahdavi, V. (1984) Expression of cardiac ventricular a- and jö-myosin heavy chain is developmentally and hormonally regulated, J. Biol. Chem. 259:6437–6446.PubMedGoogle Scholar
  26. Murphy, D. B., Wallis, K. T., and Crasser, W. A. (1984) Expression of a unique jö-tubulin variant in chicken red-cell development, in Molecular Biology of the Cytoskeleton (C. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 59–70.Google Scholar
  27. Nabeshima, Y., Fujii-Kuriyama, Y., Muramatsu, M., and Ogata, K. (1984) Alternative transcription and two modes of splicing results in two myosin light chains from one gene. Nature 308:333–338.PubMedCrossRefGoogle Scholar
  28. Nelson, W. J., and Lazarides, E. (1984) The pattern of expression of two ankyrin isoforms demonstrate distinct steps in the assembly of the membrane skeleton in neuronal morphogenesis, Cell 39:309–320.PubMedCrossRefGoogle Scholar
  29. Pittenger, M. F., and Cleveland, D. W. (1985) Retention of autoregulatory control of tubulin synthesis in cytoplasts: Demonstration of a cytoplasmic mechanism that regulates the level of tubulin expression, J. Cell Biol. 101:1941–1952.PubMedCrossRefGoogle Scholar
  30. Raff, E. C. (1984) Genetics of microtubule systems, J. Cell Biol. 99:1–10.PubMedCrossRefGoogle Scholar
  31. Riederer, B., and Matus, A. (1985) Differential expression of distinct microtubule-associated proteins during brain development, Proc. Natl. Acad. Sei. USA 82:6006–6009.CrossRefGoogle Scholar
  32. Rosenbaum, J. L., Moulder, J. E., and Ringo, D. L. (1969) Flagellar elongation and shortening in Chlamydomonas: The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins, J. Cell Biol. 41:600–619.PubMedCrossRefGoogle Scholar
  33. Ruiz-Opazo, N., Weinberger, J., and Nadal-Ginard, B. (1985) Comparison of «-tropomyosin sequences from smooth and striated muscle. Nature 315:67–70.PubMedCrossRefGoogle Scholar
  34. Schedl, T., Burland, T. G., Gull, K., and Dove, W. F. (1984) Cell cycle regulation of tubulin RNA level, tubulin protein synthesis, and assembly of microtubules in Physarum, J. Cell Biol. 99:155–165.PubMedCrossRefGoogle Scholar
  35. Silflow, C. D., Lefebvre, P. A., McKeithan, T. W., Schloss, J. A. Keller, L. R., and Rosenbaum, J. L. (1982) Expression of flagellar protein genes during flagellar regeneration in Chlamydomonas, Cold Spring Harbor Symp. Quant. Biol. 46:157–169.PubMedCrossRefGoogle Scholar
  36. Sullivan, K. F., Havercroft, J. C., and Cleveland, D. W. (1984) Primary structure and expression of a vertebrate β-tubulin gene family, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 321–332.Google Scholar
  37. Tannenbaum, J., and Brett, J. G. (1985) Evidence for regulation of actin synthesis in cytochalasin D-treated Hep-2 cells, Exp. Cell Res. 160:435–448.PubMedCrossRefGoogle Scholar
  38. Thomas, J. H., Novick, P., and Botstein, D. (1984) Genetics of the yeast cytoskeleton, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 153–174.Google Scholar
  39. Welch, W. J., and Suhan, J. P. (1985) Morphological study of the mammalian stress response: Characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment, J. Cell Biol. 101:1198–1211.PubMedCrossRefGoogle Scholar
  40. Woods, C. M., and Lazirides, E. (1985) Degradation of unassembled a- and jö-spectrin by distinct intracellular pathways: Regulation of spectrin topogenesis by β-spectrin degradation, Cell 40:959–969.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations