Cytoskeleton pp 167-201 | Cite as

Cytoskeleton and Internal Organization of the Cell

  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)


Cytoskeleton is the structure-forming component of the cell. It determines to a large degree the cell shape and distribution of other intracellular organelles and of the components of the plasma membrane. Cytoskeleton integrates various parts of the single cell and various cells into united structures. There are several levels of this integration.


Hair Cell Actin Filament Intermediate Filament Axonal Transport Pigment Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aebi, U., Cohn, J., Buhle, L., and Gerace, L. (1986) The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323:560–564.PubMedCrossRefGoogle Scholar
  2. Albrecht-Buehler, G. (1980) Autonomous movements of cytoplasmic fragments, Proc. Natl Acad. Sci. USA 77:6639–6644.PubMedCrossRefGoogle Scholar
  3. Forman, D. S. (1984) Axonal transport of organelles, Trends Neurosci. 7:112–116.CrossRefGoogle Scholar
  4. Gelfand, V. I., Glushankova, N. A., Ivanova, O. Y., Mittelman, L. A., Pletyushkina, O. Y., Vasiliev, J. M., and Gelfand, I. M. (1985) Polarization of cytoplasmic fragments microsurgically detached from mouse fibroblasts, Cell Biol. Intern. Rep. 9:883–892.CrossRefGoogle Scholar
  5. Heath, J. P. (1983) Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts, Nature 302:532–534.PubMedCrossRefGoogle Scholar
  6. Herman, B., and Albertini, D. F. (1984) A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, J. Cell Biol. 98:565–576.PubMedCrossRefGoogle Scholar
  7. Ip, W., Murphy, D. B., and Heuser, J. E. (1984) Arrest of pigment granule motion in erythrophores by quick-freezing, J.Ultrastruct Res. 86:162–175.PubMedCrossRefGoogle Scholar
  8. Kuznetsov, S. A., and Gelfand, V. I. (1986) Bovine brain kinesin is a microtubule-activated ATPase, Proc. Natl. Acad. Sci. USA 83:8530–8534.PubMedCrossRefGoogle Scholar
  9. Lyass, L. A., Bershadsky, A. D., Gelfand, V. I., Serpinskaya, A. S., Stavrovskaya, A. A., Vasiliev, J. M., and Gelfand, I. M. (1984) Multinucleation-induced improvement of the spreading of transformed cells on the substratum, Proc. Natl. Acad. Sci. USA 81:3098–3102.PubMedCrossRefGoogle Scholar
  10. McKeon, F. D., Krischner, M. W., and Caput, D. (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319:463–468.PubMedCrossRefGoogle Scholar
  11. McNiven, M. A., and Porter, K. R. (1984) Chromatophores—Models for studying cytomatrix translocation, J. Cell Biol. 99:152s-158s.PubMedCrossRefGoogle Scholar
  12. McNiven, M. A., Wang, M., and Porter, K. R. (1984) Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell 37:753–765.PubMedCrossRefGoogle Scholar
  13. Murphy, D. B., and Grasser, W. A. (1984) Intermediate filaments in the cytoskeletons of fish chromatophores, J. Cell Sci. 66:353–366.PubMedGoogle Scholar
  14. Scheer, U., Hinssen, H., Franke, W. W., and Jockusch, B. M. (1984) Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39:111–122.PubMedCrossRefGoogle Scholar
  15. Schliwa, M., Pryzwansky, K. B., and van Blerkom, J. (1982) Implications of cytoskeletal interactions for cellular architecture and behavior, Phil. Trans. R. Soe. Lond. B. 299:199–205.CrossRefGoogle Scholar
  16. Tiwari, S. C., Wick, S. M., Williamson, R. E., and Cunning, B. E. S. (1984) Cytoskeleton and integration of cellular function in cells of higher plants, J. Cell Biol. 99:63s-69s.PubMedCrossRefGoogle Scholar
  17. Travis, J. L., Kenealy, J. F. X., and Allen, R. D. (1983) Studies on the motility of the foraminifera II. The dynamic microtubular cytoskeleton of the reticulopodial network ofAllogromia latieollaris, J. Cell Biol. 97:1668–1676.PubMedCrossRefGoogle Scholar
  18. Tsukita, S., and Ishikava, H. (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles, J. Cell Biol. 84:513–530.PubMedCrossRefGoogle Scholar
  19. Vale, R. D., Reese, T. S., and Sheetz, M. P. (1985a) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50.PubMedCrossRefGoogle Scholar
  20. Vale, R. D., Schnapp, B. J., Mitchison, T., Steuer, E., Reese, T. S., and Sheetz, M. P. (1985b) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro, Cell 43:623–632.PubMedCrossRefGoogle Scholar

Additional Readings: General organization of the cytoskeleton; association between different cytoskeletal elements and between cytoskeleton and cell organelles

  1. Arakawa, T., and Frieden, C. (1984) Interaction of microtubule-associated proteins with actin filaments. Studies using the fluorescence-photobleaching recovery technique, J. Biol. Chem. 259:11730–11734.Google Scholar
  2. Ball, E. H., and Singer, S. J. (1982) Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts, Proc. Natl. Acad. Sci USA 79:123–126.PubMedCrossRefGoogle Scholar
  3. Bennet, V. (1984) Brain ankyrin, membrane-associated protein with binding sites for spectrin, tubulin and the cytoplasmic domain of the erythrocyte anion channel, J. Biol. Chem. 259:13550–13559.Google Scholar
  4. Bloom, G. S., and Vallee, R. B. (1983) Association of microtubule-associated protein 2 (MAP2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96:1523–1531.PubMedCrossRefGoogle Scholar
  5. Brinkley, B. R. (1982) Summary: Organization of the cytoplasm,Cold Spring Harbor Symp. Quant. Biol 46:1029–1040.PubMedCrossRefGoogle Scholar
  6. Clegg, J. S. (1984) Intracellular water and the cytomatrix: Some methods of study and current views, J.Cell Biol. 99:167s-171s.PubMedCrossRefGoogle Scholar
  7. Cohen, J., de Loubresse, N. G., and Beisson, J. (1984) Actin microfilaments in Paramecium: Localization and role in intracellular movements, Cell Motil. 4:443–468.PubMedCrossRefGoogle Scholar
  8. Collot, M., Louvard, D., and Singer, S. J. (1984) Association between lysosomes and microtubules in cultured fibroblasts, as studied by double immunofluorescence labelling, J. Submicrosc. Cytol 16:65–67.Google Scholar
  9. Couchman, J. R., and Rees, D. A. (1982) Organelle-cytoskeleton relationships in fibroblasts: Mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth, Eur. J. Cell Biol. 27:47–54.PubMedGoogle Scholar
  10. Geiger, B., and Singer, S. J. (1980) The association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence, Proc. Natl. Acad. Sci. USA 77:4769–4773.PubMedCrossRefGoogle Scholar
  11. Gershon, N. D., Porter, K. R., and Trus, B. L. (1985) The cytoplasmic matrix: Its volume and surface area and the diffusion of molecules through it, Proc. Natl. Acad. Sci. USA 82:5030–5034.PubMedCrossRefGoogle Scholar
  12. Geuens, G., De Brabander, M., Nuydens, R., and De Mey, J. (1983) The interaction between microtubules and intermediate filaments in cultured cells treated with taxol and nocodazole. Cell Biol. Int. Rep. 7:35–47.PubMedCrossRefGoogle Scholar
  13. Heiman, R., Shelanski, M. L., and Liem, R. K. H. (1985) Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein, J. Biol. Chem. 260:12160–12166.Google Scholar
  14. Hirokawa, N. (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axon revealed by quick-freeze, deep-etching method, J. Cell Biol. 94:129–142.PubMedCrossRefGoogle Scholar
  15. Hirokawa, N., Cheney, R. F., and Willard, M. (1983) Location of a protein of the fodrin-spectrin- TW260J240 family in the mouse intestinal brush border. Cell 32:953–965.PubMedCrossRefGoogle Scholar
  16. Leterrier, J. F., Liem, R. K. H., and Shelanski, M. L. (1982) Interactions between neurofilaments and microtubule-associated proteins: A possible mechanism for intraorganellar bridging, J. Cell Biol. 95:982–986.PubMedCrossRefGoogle Scholar
  17. Lloyd, C. W. (1984) Toward a dynamic helical model for the influence of microtubules on wall patterns in plants, Int. Rev. Cytol. 86:1–51.CrossRefGoogle Scholar
  18. Mangeat, P. H., and Burridge, K. (1983) Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: Relation to cytoskeletal structures, J. Cell Biol. 98:1363–1377.CrossRefGoogle Scholar
  19. Pollard, T. D., Sciden, S. C., and Maupin, P. (1984) Interaction of actin filaments with microtubules, J. Cell Biol. 99(lpt2):33s-37s.PubMedCrossRefGoogle Scholar
  20. Rogalski, A. A., and Singer, S. J. (1984) Association of elements of the Golgi apparatus with microtubules, J. Cell Biol. 99:1092–1100.PubMedCrossRefGoogle Scholar
  21. Sandoval, I. V., Bonifacino, J. S., Klausner, R. D., Henkart, M., and Wehland, J. (1984) Role of microtubules in the organization and localization of the Golgi apparatus, J. Cell Biol. 99:113s-118s.PubMedCrossRefGoogle Scholar
  22. Schliwa, M., and van Blerkom, J. (1981) Structural interaction of cytoskeletal components,J. Cell Biol. 90:222–235.PubMedCrossRefGoogle Scholar
  23. Thyberg, J., and Moskalewski, S. (1985) Microtubules and the organization of the Golgi complex, Exp. Cell Res. 159:1–16.PubMedCrossRefGoogle Scholar
  24. Tiwari, S. C., Wick, S. M., Williamson, R. E., and Gunning, B. E. S. (1984) The cytoskeleton and integration of cellular function in cells of higher plants, J. Cell Biol. 99(lpt2):63s-69s.PubMedCrossRefGoogle Scholar

Intracellular transport

  1. Adams, R. J. (1982) Organelle movement in axons depends upon ATP,Nature 297:327–329.PubMedCrossRefGoogle Scholar
  2. Adams, R. J., and Bray, J. D. (1983) Rapid transport of foreign particles microinjected into crab axons. Nature 303:718–720.PubMedCrossRefGoogle Scholar
  3. Allen, N. S., and Allen, R. D. (1978) Cytoplasmic streaming in green plants, Ann. Rev. Biophys. Bioeng. 7:497–526.CrossRefGoogle Scholar
  4. Allen, R. D. (1985) New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy, Ann. Rev. Biophys. Biophys. Chem. 14:265–290.CrossRefGoogle Scholar
  5. Allen, R. D., Weiss, D. G., Hayden, J. H., Brown, D. T., Fujiwake, H., and Simpson, M. (1985) Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: Evidence for an active role of microtubules in cytoplasmic transport, J. Cell Biol 100:1736–1752.PubMedCrossRefGoogle Scholar
  6. Bard, F., Bourgeois, C. A., Costagliola, D., and Bouteille, M. (1985) Rotation of the cell nuclei in living cells, a quantitative analysis, Biol. Cell 54:135–142.PubMedCrossRefGoogle Scholar
  7. Beckerle, M. C. (1984) Microinjected fluorescent polystyrene beads exhibit saltatory motion in tissue cuhure cells, J.Cell Biol. 98:2126–2132.PubMedCrossRefGoogle Scholar
  8. Beckerle, M. C., and Porter, K. R. (1983) Analysis of the role of microtubules and actin in ery- throphore intracellular motility, J.Cell Biol. 96:354–362.PubMedCrossRefGoogle Scholar
  9. Brady, S. T., Lasek, R. J., and Allen, R. D. (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131.PubMedCrossRefGoogle Scholar
  10. Brady, S. T., Lasek, R. J., Allen, R. D., Yin, H. L., and Stossel, T. P. (1984) Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments, Nature 310:56–58.PubMedCrossRefGoogle Scholar
  11. Brady, S. T., Lasek, R. J., and Allen, R. D. (1985) Video microscopy of fast axonal transport in extruded axoplasm: A new model for study of molecular mechanisms, Cell Motil. 5:81–101.PubMedCrossRefGoogle Scholar
  12. Clark, T. G., and Rosenbaum, J. L. (1984) Energy requirements for pigment aggregation in Fun- duJus melanophores, Cell Motil. 4:431–441.PubMedCrossRefGoogle Scholar
  13. De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M., and De Mey, J. (1985) Probing micro- tubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy), Cytobios 43:273–283.PubMedGoogle Scholar
  14. Forman, D. S., Brown, K. J., and Promersberger, M. E. (1983) Selective inhibition of retrograde axonal transport by erythro-9–3(2-hydroxynonyl) adenine. Brain Res. 272:194–197.PubMedCrossRefGoogle Scholar
  15. Freed, J. J., and Lebowitz, M. M. (1970) The association of a class of saltatory movements with microtubules in cultured cells, J. Cell Biol. 45:334–354.PubMedCrossRefGoogle Scholar
  16. Gilbert, S. P., Allen, R. D., and Sloboda, R. D. (1985) Translocation of vesicles from squid axoplasm on flagellar microtubules, Nature 315:245–248.PubMedCrossRefGoogle Scholar
  17. Hayden, J. H., and Allen, R. D. (1984) Detection of single microtubules in living cells: Particle transport can occur in both directions along the same microtubule, J. Cell Biol. 99:1785–1793.PubMedCrossRefGoogle Scholar
  18. Hayden, J. H., Allen, R. D., and Goldman, R. D. (1983) Cytoplasmic transport in keratocytes: Direct visualization of particle translocation along microtubules, Cell Motil. 3:1–19.PubMedCrossRefGoogle Scholar
  19. Herman, B., and Albertini, D. F. (1984) A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation, J. Cell Biol. 98:565–575.PubMedCrossRefGoogle Scholar
  20. Koonce, M. P., and Schliwa, M. (1985) Bidirectional organelle transport can occur in cell processes that contain single microtubules, J. Cell Biol. 100:322–326.PubMedCrossRefGoogle Scholar
  21. Lasek, R. J., Garner, J. A., and Brady, S. T. (1984) Axonal transport of the cytoplasmic matrix, J. Cell Biol. 99(lpt2):212s-221s.PubMedCrossRefGoogle Scholar
  22. Martz, D., Lasek, R. J., Brady, S. T., and Allen, R. D. (1984) Mitochondrial motility in axons: membranous organelles may interact with the force generating system through multiple surface binding sites, Cell Motil. 4:89–101.PubMedCrossRefGoogle Scholar
  23. Nothnagel, E. A., Barak, L. S., Sanger, J. W., and Webb, W. W. (1981) Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara, J. Cell Biol. 88:364–372.PubMedCrossRefGoogle Scholar
  24. Schliwa, M. (1984) Mechanisms of intracellular organelle transport, in Cell and Muscle Motility, Vol. 5 (J. W. Shay, ed.). Plenum Press, New York, pp. 1–80.Google Scholar
  25. Stearns, M. E., and Ochs, R. L. (1982) A functional in vitro model for studies of intracellular motility in digitonin-permeabilized erythrophores, J. Cell Biol. 94:727–739.PubMedCrossRefGoogle Scholar

Cytoskeleton and membrane; capping and related phenomena

  1. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M. (1972) The locomotion of fibroblasts in culture. V. Surface marking with concanavalin A,Exp. Cell Res. 73:536–539.PubMedCrossRefGoogle Scholar
  2. Ben-Ze’ev, A., Duerr, A., Solomon, F., and Penman, S. (1979) The outer boundary of the cytoskeleton: A lamina derived from plasma membrane proteins, Cell, 17:859–865.PubMedCrossRefGoogle Scholar
  3. Bourguignon, L. Y. W., and Bourguignon, G. L. (1984) Capping and the cytoskeleton. Int. Rev. Cytol. 87:195–224.PubMedCrossRefGoogle Scholar
  4. Bowser, S. S., and Bloodgood, R. A. (1984) Evidence against surf-riding as a general mechanism for surface motility. Cell Motil. 4:305–314.PubMedCrossRefGoogle Scholar
  5. Bowser, S. C., and Rieder, G. L. (1985) Evidence that cell surface motility in Allogromia is mediated by cytoplasmic microtubules, Can. J. Biochem. Cell Biol. 63:608–620.PubMedGoogle Scholar
  6. Doyles, J., and Baiton, D. F. (1981) Changes in plasma-membrane-associated filaments during endocytosis and exocytosis in polymorphonuclear leukocytes, Cell 24:905–914.CrossRefGoogle Scholar
  7. Bratscher, M. S. (1976) Directed lipid flow in cell membranes,Nature 260:21–23.CrossRefGoogle Scholar
  8. Carboni, J. M., and Condeelis, J. S. (1985) Ligand-induced changes in the location of actin, myosin, 95K (a-actinin), and 120K protein in amebae of Dictyostelium discoideum, J. Cell Biol. 100:1884–1893.PubMedCrossRefGoogle Scholar
  9. Condeelis, J., (1979) Isolation of concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80:751–758.PubMedCrossRefGoogle Scholar
  10. Coudrier, E., Reggio, H., and Louvard, D. (1983) Characterization of an integral membrane glycoprotein associated with the microfilaments of pig intestinal microvilli, EMBO (Eur. Mol. Biol. Organ.) J. 2:469–475.Google Scholar
  11. Dellagi, K., and Brouet, J. C. (1982) Redistribution of intermediate filaments during capping of lymphocyte surface molecules. Nature 298:284–286.PubMedCrossRefGoogle Scholar
  12. Dembo, M., and Harris, A. K. (1981) Motion of particles adhering to the leading lamella of crawling cells, J. Cell Biol. 91:528–536.PubMedCrossRefGoogle Scholar
  13. Dentler, W. L., Pratt, M. M., and Stephens, R. E. (1980) Microtubule-membrane interactions in cilia. II. Photochemical cross-linking of bridge structures and the identification of a membrane associated dynein-like ATPase, J. Cell Biol. 84:381–403.PubMedCrossRefGoogle Scholar
  14. De Petris, S. (1977) Distribution and mobility of plasma membranae components on lymphocytes, in Dynamic Aspects of Cell Surface Organization (G. Poste and G. L. Nicolson, eds.), ElsevierJ North-Holland Biochemical Press, Amsterdam, pp. 643–728.Google Scholar
  15. Geiger, B. (1983) Membrane-cytoskeleton interaction, Biochimi. Biophys. Acta 737:305–341.Google Scholar
  16. Geiger, B. Z., Avnur,J. E., Kreis, T. E., and Schlessinger, J. (1984) The dynamics of cytoskeletal organization in areas of cell contact, in Cell and Muscle Motility, Vol. 5 (J. W. Shag, ed.). Plenum Press, New York, pp. 195–235.Google Scholar
  17. Georgatos, S. D., and Marchesi, V. T. (1985) The binding of vimentin to human erythrocyte membranes: A model system for the study of intermediate filament-membrane interactions, J. Cell Biol. 100:1955–1961.PubMedCrossRefGoogle Scholar
  18. Goodloe-Holland, C. M., and Luna, E. J: (1984) A membrane cytoskeleton from Dictyostelium discoideum. III. Plasma membrane fragments bind predominantly to the sides of actin filaments, J. Cell Biol. 99:71–78.PubMedCrossRefGoogle Scholar
  19. Harris, A. K. (1976) Recycling of dissolved plasma membrane components as an explanation of the capping phenomenon. Nature 263:781–783.PubMedCrossRefGoogle Scholar
  20. Heath, J. P. (1983) Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts. Nature 302:532–534.PubMedCrossRefGoogle Scholar
  21. Hewitt, J. A. (1979) Surf-riding model for cell capping, J. Theor. Biol. 80:115–127.PubMedCrossRefGoogle Scholar
  22. Jacobson, B. S. (1983) Interaction of the plasma membrane with the cytoskeleton: An overview. Tissue Cell 15:829–852.PubMedCrossRefGoogle Scholar
  23. Laub, F., Kaplan, M., and Gitler, C. (1981) Actin polymerization accompanies thy-l-capping on mouse thymocytes, FEBS Lett. 124:35–38.PubMedCrossRefGoogle Scholar
  24. Lehto, B-P., Vartio, T., Badley, R. A., and Virtanen, I., (1983) Characterization of a detergent resistant surface lamina in cultured human fibroblasts, Exp. Cell Res. 143:287–294.PubMedCrossRefGoogle Scholar
  25. Levine, J., and Willard, M. (1983) Redistribution of fodrin accompanying capping of cell surface molecules, Proc. Natl. Acad. Sci. USA 80:191–195.PubMedCrossRefGoogle Scholar
  26. Mangeat, P., and Burridge, K. (1984) Actin-membrane interaction in fibroblast: What proteins are involved in this association? J. Cell Biol. 99:95s-103s.PubMedCrossRefGoogle Scholar
  27. Moran, D. T., Varela, F. J., and Rowley, J. C. (1977) Evidence for active role of cilia in sensory transduction, Proc. Natl. Acad. Sci. USA 74:793–797.PubMedCrossRefGoogle Scholar
  28. Oliver, J. M., and Berlin, R. D. (1982) Distribution of receptors and functions on cell surfaces: Quantitation of ligand-receptor mobility and a new model for the control of plasma membrane topography, Phil. Trans. R. Soc. Lond. B 299:215–235.CrossRefGoogle Scholar
  29. Rogalski, A. A., Bergman, J. E., and Singer, S. J. (1984) Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane, J. Cell Biol. 99:1101–1109.PubMedCrossRefGoogle Scholar
  30. Rogers, K. A., Khoshbaf, M. A., and Brown, D. L. (1981) Relationship of microtubule organization in lymphocytes to the capping of immunoglobulin, Eur. J. Cell Mol. 24:1–8.Google Scholar
  31. Schlessinger, J. (1983) Mobilities of cell-membrane proteins: How are they modulated by the cytoskeleton? Trends Neurosci. (TINS) 6:360–363.CrossRefGoogle Scholar
  32. Singer, S. J., Ash, J. F., Bourguignon, L. Y. W., Heygeness, M. H., and Louvard, D. (1978) Transmembrane interactions and the mechanisms of transport of proteins across membranes, J. SupramoL Struct. 9:373–389.PubMedCrossRefGoogle Scholar
  33. Smith, B. A., Clark, W. R., and McConnell, H. M. (1979) Anisotropic molecular motion of cell surfaces, Proc. Natl Acad. Sci. USA 76:5641–5644.PubMedCrossRefGoogle Scholar
  34. Spiegel, S., Kassis, S., Wilchek, M., and Fishman, P. H., (1984) Direct visualization of redistribution and capping of fluorescent gangliosides on lymphocytes, J. Cell Biol. 99:1575–1581.PubMedCrossRefGoogle Scholar
  35. Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Dorfman, N. A., and Pletyushkina, O. Y. (1976) Active cell edge and movements of concanavalin A receptors of the surface of epithelial and fibroblastic cells, Proc. Natl Acad. Sci. USA 73:4085–4089.PubMedCrossRefGoogle Scholar

Multinuclear cells and cell fragments

  1. Albrecht-Buehler, C. (1982) Does blebbing reveal the convulsive flow of liquid and solutes through the cytoplasmic meshwork? Cold Spring Harbor Symp. Quant. Biol. 46:45–50.PubMedCrossRefGoogle Scholar
  2. Cain, H., Kraus, B., Fringes, B., Osborn, M., and Weber, K. (1981) Centrioles, microtubules and microfilaments in activated mononuclear and multinucleate macrophages from rat peritoneum: Electron-microscopic and immunofluorescence microscopic studies, J. Pathol. 133:301–323.PubMedCrossRefGoogle Scholar
  3. Euteneuer, U., and Schliwa, M. (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310:58–60.PubMedCrossRefGoogle Scholar
  4. Holmes, K., and Coppin, P. W. (1968) On the role of microtubules in movement and alignment of nuclei in virus-induced syncytia, J. Cell Biol. 51:752–762.Google Scholar
  5. Keller, H. U., and Bessis, M. (1975) Migration and Chemotaxis of anucleate cytoplasmic leukocyte fragments. Nature 258:723–724.PubMedCrossRefGoogle Scholar
  6. Shaw, J., and Bray, D. (1977) Movement and extension of isolated growth cones, Exp. Cell Res. 104:55–62.PubMedCrossRefGoogle Scholar
  7. Wang, E., Cross, R. H., and Choppin, P. W. (1979) Involvement of microtubules and 10 nm filaments in the movement and positioning of nuclei in syncytia, J. Cell Biol. 83:320–327.PubMedCrossRefGoogle Scholar
  8. Wang, E., Roos, D. S., Hegeness, N. H., and Choppin, P. W. (1982) Function of cytoplasmic fibers in syncytia. Cold Spring Harbor Symposia Quant. Biol. 46:997–1012.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations