Cytoskeleton pp 155-164 | Cite as

Unconventional Fibrillar Structures in the Cytoplasm

  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)


Besides the classical three groups of cytoskeletal structures, a number of other fibrillar elements have been described in the cytoplasm. These structures have not yet been well explored. Some of them have been seen only in the cells of a few types of lower eukaryotes. Even the existence of some of these structures is still controversial. Nevertheless, it is possible that future studies will show that at least some of these fibrils are not artifacts or exotic rarities, but are important and common components of the cytoskeleton. Therefore, the data on these structures deserve attention.


Actin Filament Thin Filament Cytoskeletal Structure Myosin Filament Sperm Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Heuser, J. E., and Kirschner, M. (1980) Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol 86:212–234.PubMedCrossRefGoogle Scholar
  2. Hirokawa, N. (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol 94:129–142.PubMedCrossRefGoogle Scholar
  3. Maruyama, K., Sawada, H., Kimura, S., Ohashi, K., Higuchi, H., and Umazume, Y. (1984) Connectin filaments in stretched skinned fibers of from skeletal muscle, J. Cell Biol 99:1391–1397.PubMedCrossRefGoogle Scholar
  4. Nelson, G. A., Roberts, T. M., and Ward, S. (1982) Caenorhabditis elegans spermatozoan locomotion: Amoeboid movement with almost no actin, J.Cell Biol 92:121–131.PubMedCrossRefGoogle Scholar
  5. Porter, K. R., and Tucker, J. B. (1981) The ground substance of the living cell, Sci. Am. 244(3):57–67.CrossRefGoogle Scholar
  6. Routledge, L. M., Amos, W. B., Yew, F. F., and Weis-Fohg, T. (1976) New calcium-binding contractile proteins, in Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 93–114.Google Scholar
  7. Salisbury, J. L., Baron, A., Surek, B., and Melkonian, M. (1984) Striated flagellar roots: Isolation and partial characterization of a calcium-modulated contractile organelle, J. Cell Biol 99:962–970.CrossRefGoogle Scholar
  8. Schliwa, M., Van Blerkom, J., and Porter, K. R. (1981) Stabilization of the cytoplasmic ground substance in detergent-opened cells and a structural and biochemical analysis of its composition, Proc. Natl Acad. Sci USA 78:4329–4333.PubMedCrossRefGoogle Scholar
  9. Trinick, J., Knight, P., and Whiting, A. (1984) Purification and properties of native titin, J. MoL Biol 180:331–356PubMedCrossRefGoogle Scholar

Additional Readings

  1. Amos, W. B. (1972) Structure and coiling of the stalk in the Peritrich ciliates Vorticella and Carchesium, J.Cell Sci 10:95–122.PubMedGoogle Scholar
  2. Amos, W. B., Routledge, L. M., and Yew, F. F. (1975) Calcium binding proteins in a vorticellid contractile organelle, J. Cell Sci. 19:203–213.PubMedGoogle Scholar
  3. Bridgman, P. C., and Reese, T. S. (1984) The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance, J. Cell Biol 99:1655–1668.PubMedCrossRefGoogle Scholar
  4. Byers, H. R., and Porter, K. R. (1977) Transformations in the structure of the cytoplasmic ground substance in erythrophores during pigment aggregation and dispersion, J. Cell Biol. 75:541–558.PubMedCrossRefGoogle Scholar
  5. Cachon, J., and Cachon, M. (1981) Movement by non-actin filament mechanisms,Biosystems 14:313–326.PubMedCrossRefGoogle Scholar
  6. Cachon, J., and Cachon, M. (1984) An unusual mechanism of cell contraction: Leptodiscinae dino- flagellates, Cell Motil 4:41–55.CrossRefGoogle Scholar
  7. Cachon, J., and Cachon, M. (1985) Non-actin filaments and cell contraction in Kofoidinium and other dinoflagellates. Cell Motil. 5:1–15.CrossRefGoogle Scholar
  8. Cachon, J., Cachon, M., Tilney, L. G., and Tilney, M. (1976) Movement generated by interaction between dense material at the ends of microtubules and non-actin containing microfilaments inSticholonche zanclea, J. Cell Biol. 72:213–338.Google Scholar
  9. Ellisman, M. H., and Porter, K. R. (1980) Microtrabecular structure of the axoplasmic matrix: Visualization of cross-linking structures and their distribution, J. Cell Biol. 87:464–479.PubMedCrossRefGoogle Scholar
  10. Gershon, N. D., Porter, K. R., and Trus, B. L. (1985) The cytoplasmic matrix: Its volume and surface area and the diffusion of molecules through it, Proc Natl. Acad. Sci. USA 82:5030–5034.PubMedCrossRefGoogle Scholar
  11. Hirokawa, N., Cheney, R. E., and Willard, M. (1983) Location of a protein of the fodrin-spectrin- TW 260J240 family in the mouse intestinal brush border. Cell 32:953–965.PubMedCrossRefGoogle Scholar
  12. Ip, W., Murphy, D. B., and Heuser, J. E. (1984) Arrest of pigment granule motion in erythrophores by quick-freezing, J.Ultrastruc. Res. 86:162–175.CrossRefGoogle Scholar
  13. Porter, K. B., Beckerle, M., and McNiven, M. (1983) The cytoplasmic matrix, in Modern Cell Biology, Vol. 2, Spatial Organization of Eukaryotic Cells (J. R. Mcintosh, ed.), Alan R. Liss, New York, pp. 259–262.Google Scholar
  14. Roberts, T. M. (1983) CrawlingCaenorbabditis elegans spermatozoa contact the substrate only by their pseudopods and contian 2-nm filaments. Cell Motil. 3:333–347.CrossRefGoogle Scholar
  15. Roberts, T. M., and Ward, S. (1982) Centripetal flow of pseudopodial surface components could propel the amoeboid movement ofCaenorbabditis eJegans spermatozoa, J. Cell Biol. 92:132–138.PubMedCrossRefGoogle Scholar
  16. Schliwa, M., and Van Blerkom, J. (1981) Spatial interaction of cytoskeletal components, J. Cell Biol. 90:222–235.PubMedCrossRefGoogle Scholar
  17. Wang, K., Ramirez-Mitchell, R., and Palter, D. (1984) Titin is an extraordinarily long, flexible, and slender myofibrillar protein, Proc. Natl. Acad. Sci. USA 81:3685–3689.PubMedCrossRefGoogle Scholar
  18. Wolosewick, J. J., and Porter, K. R. (1979) Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality, J. Cell Biol. 82:114–139.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations