Advertisement

Cytoskeleton pp 133-154 | Cite as

Systems of Intermediate Filaments

  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)

Abstract

Intermediate filaments (IFs), as indicated by their name, are thicker than actin filaments, but thinner than microtubules. Their diameter in electron microscopic sections is 8–12 nm (Fig. 3.1A).It is possible that IFs, in contrast to actin filaments and microtubules, are not universal components of the cytoskeleton of all eukaryotic cells.

Keywords

Glial Fibrillary Acidic Protein Cold Spring Harbor Intermediate Filament Cold Spring Harbor Laboratory Scanning Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aebi, U., Fowler, W. E., Rew, P., and Sun, T-T. (1983) The fibrillar substructure of keratin filaments unraveled, J. Cell Biol. 97:1131–1141.PubMedCrossRefGoogle Scholar
  2. Klymkowsky, M. W., Miller, R. H., and Lane, E. B. (1983) Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization, J. Cell Biol. 96:494–509.PubMedCrossRefGoogle Scholar
  3. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R. (1982) The catalog of human cytokeratins: Pattern of expression in normal epithelia, tumors, and cultured cells.Cell 31:11–24.PubMedCrossRefGoogle Scholar
  4. Quax-Jenken, Y., Quax, W., and Bloemendal, H. (1983) Primary and secondary structure of hamster vimentin predicted from the nucleotide sequence, Proc. Natl. Acad. Sci. USA 80:3548–3552.CrossRefGoogle Scholar

Additional Readings: General

  1. Steinert, P. M., Jones, J. C. R., and Goldman, R. D. (1984) Intermediate filaments, J. Cell Biol. 99(1 pt2):22s-27s.PubMedCrossRefGoogle Scholar
  2. Steinert, P. M., Steven, A. C., and Roop, D. R. (1985) The molecular biology of intermediate filaments, Cell 42:411–419.PubMedCrossRefGoogle Scholar
  3. Traub, P. (1985) Intermediate Filaments, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, pp. 1–256.CrossRefGoogle Scholar
  4. Wang, E., Fishman, D., Liem, R. K. H., and Sun T-T., eds. (1985) Intermediate filaments, Ann. NY Acad. Sci. 455:1–832.Google Scholar

IF-proteins; structure of the filaments; assembly in vitro

  1. Engel, A., Eichner, R., and Aebi, U. (1985) Polymorphism of reconstituted human epidermal keratin filaments: Determination of their mass-per-length and width by scanning transmission electron microscopy (STEM), J. Ultrastruct. Res. 90:323–335.PubMedCrossRefGoogle Scholar
  2. Fuchs, E., Kim, K. H., Hanukoglu, I., Marchuk, D., Tyner, A., and McCrohon, S. (1984) Influence of differential keratin gene expression on the structure and properties of the resulting 8-nm filaments, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 381–393.Google Scholar
  3. Geisler, N., and Weber, K. (1982) The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1:1649–1656.PubMedGoogle Scholar
  4. Geisler, N., Fischer, S., Vandekerckhove, J., VanDamme, J., Flessmann, U., and Weber, K. (1985) Protein-chemical characterization of NF-H, the largest mammalian neurofilament component; intermediate filament-type sequences followed by a unique carboxy-terminal extension, EMBO J. 4:57–63.PubMedGoogle Scholar
  5. Geisler, N., Kaufman, E., and Weber, K. (1985) Antiparallel orientation of the two double- stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments, J. Moll. Biol. 182:173–177.CrossRefGoogle Scholar
  6. Hanukoglu, I., and Fuchs, E. (1983) The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable structural domains among keratins. Cell 33:915–224.PubMedCrossRefGoogle Scholar
  7. Hatzfeld, M., and Franke, W. W. (1985) Pair formation and promiscuity of cytokeratins: Formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides, J. Cell Biol. 101:1826–1841.PubMedCrossRefGoogle Scholar
  8. Henderson, D., Geisler, N., and Weber, K. (1982) A periodic ultrastructure in intermediate filaments, J. Mol. Biol. 155:173–176.PubMedCrossRefGoogle Scholar
  9. Ip, W., Hartzer, M. K., Pang, Y-Y.S., and Robson, R. M. (1985) Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments, J.Mol. Biol. 183:365–375.PubMedCrossRefGoogle Scholar
  10. Jorcano, J. L., Franz, K. K., Rieger, M., Magim, T. M., and Franke, W. W. (1984) Identification of different types of keratin polypeptides distinguished within the acidic cytokeratins subfamily: Corresponding cytokeratins in diverse species, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 395–408.Google Scholar
  11. Kaufmann, E., Geisler, N., and Weber, K. (1984) SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins,FEBS Lett. 170:81–84.PubMedCrossRefGoogle Scholar
  12. Krieg, T. M., Schäfer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop., D. R. (1985) Organization of a type I keratin gene. Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260:5867–5870.PubMedGoogle Scholar
  13. Lawson, D. (1983) Epinemin: A new protein associated with vimentin in non-neural cells, J. Cell Biol. 97:1891–1905.PubMedCrossRefGoogle Scholar
  14. Lewis, S. A., Balcarek, J. M., and Cowan, N. J. (1984) Structure of mouse glial fibrillary acidic protein and its expression by in situ hybridization using a cloned cDNA probe, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 455–463.Google Scholar
  15. Lieska, N., Yang, H-Y., and Goldman, R. D. (1985) Purification of the 300 K intermediate filament- associated protein and its in vitro recombination with intermediate filaments, J. Cell Biol. 101:802–813.PubMedCrossRefGoogle Scholar
  16. Marchuk, D., McCrohon, S., and Fuchs, S. (1984) Remarkable conservation of structure among intermediate filament genes. Cell 39:491–498.PubMedCrossRefGoogle Scholar
  17. Parry, D. A. D., Steven, A. C., and Steinert, P. M. (1985) The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register, Biochem. Biophys. Res. Commun. 127:1012–1018.PubMedCrossRefGoogle Scholar
  18. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding A. J., and Anderton, B. H. (1981) All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody,Cell 27:419–428.PubMedCrossRefGoogle Scholar
  19. Quax, W., Quax-Jenken, I., van den Hevel, T., Ergerts, W. V., and Bloomendal, H. (1984) Organization and sequence of the genes for desmin and vimentin, in Molecular Biology of the Cytoskeleton, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 445–454.Google Scholar
  20. Quinlan, R. A., Golberg, J. A., Schiller, D. L., Hatzfeld, M., and Franke, W. W. (1984) Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepa- tocytes and hepatoma cells, J. Mol. Biol. 178:365–388.PubMedCrossRefGoogle Scholar
  21. Sandoval, I. V., Colaco, C. A. L. S., and Lazarides, E. (1983) Purification of the intermediate filament-associated protein, synemin, from chicken smooth muscle, J. Biol. Chem. 258:2568–2576.PubMedGoogle Scholar
  22. Sauk, J. J., Krumweide, M., Cocking-Johnson, D., and White, J. G. (1984) Reconstitution of cyto- keratin filaments invitro: Further evidence for the role of nonhelical peptides in filament assembly, J. Cell Biol. 99:1590–1597.PubMedCrossRefGoogle Scholar
  23. Steinert, P. M., Cantieri, J. S., Teller, D. C., Lonsdale-Eccles, J. D., and Dale, D. A. (1981) Charac-152 terization of a class of cationic proteins that specifically interact with intermediate filaments, Proc. Natl. Acad. Sci. USA 78:4097–4101.PubMedCrossRefGoogle Scholar
  24. Steinert, P. M., Rice, P. H., Roop, D. R., Trus, B. L, and Steven, A. C. (1983) Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments. Nature 302:794–800.PubMedCrossRefGoogle Scholar
  25. Steinert, P. M., Parry, D. A. D., Raccosin, E. L., Idler, W. W., Steven, A. C., Trus, B. Lq, and Roop, D. R. (1984) The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between type I and II keratins, Proc. Natl. Acad. Sci. USA 81:5709–5713.PubMedCrossRefGoogle Scholar
  26. Steven, A. C., Wall, J., Hainfeld, J., and Steinert, P. M. (1982) Structure of fibroblastic intermediate filaments: Analysis of scanning transmission electron microscopy, Proc. Natl. Acad. Sci. USA 79:3101–3105.PubMedCrossRefGoogle Scholar
  27. Traub, P., and Vorgias, C. E. (1983) Involvement of the N-terminal polypeptide of vimentin in the formation of intermediate filaments, J. Cell Sci. 63:43–67.PubMedGoogle Scholar
  28. Wang, E., Cairncross, J. G., Yung, W. K. A., Garber, E. A., and Liem, R. K. H. (1983) An intermediate filament-associated protein, p50, recognized by monoclonal antibodies, J. Cell Biol. 97:1507–1514.PubMedCrossRefGoogle Scholar
  29. Weber, K., and Heister, N. (1985) Intermediate filaments: Structural conservation and divergence, Ann. NY Acad. Sci. 455:126–143.PubMedCrossRefGoogle Scholar
  30. Wiche, G., Herrmann, H., Leichtfried, F., and Pytela, R. (1982) Plectin: A high molecular weight cytoskeletal polypeptide component that copurifies with intermediate filaments of the vimentin type. Cold Spring Harbor Symp. Quant. Biol. 46:475–482.PubMedCrossRefGoogle Scholar
  31. Wong, J., Hutchison, S. B., and Liem, R. K. H. (1984) An isoelectric variant of the 150,000-dalton neurofilament polypeptide. Evidence that phosphorylation state affects its association with the filament, J. Biol. Chem. 259:10867–10874.PubMedGoogle Scholar

Intermediate filaments in the cells

  1. Capetanaki, Y. C., Ngai, J., and Lazarides, E. (1984) Regulation of the expression of genes coding for the intermediate filament subunits vimentin, desmin, and glial fibrillary acidic protein, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp.415–434.Google Scholar
  2. Cooper, D., Schermer, A., and Sun, T-T (1985) Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: Strategies, applications, and limitations. Lab. Invest. 52:243–256.PubMedGoogle Scholar
  3. Dahl, D., and Bignami, A. (1986) Neurofilament phosphorylation in development. A sign of axonal maturation? Exp. Cell Res. 162:220–230.PubMedCrossRefGoogle Scholar
  4. Dawson, P. J., Hülms, J. S., and C. W. Lloyd (1985) Monoclonal antibody to intermediate filament antigen cross-reacts with higher plant cells, J.Cell Biol. 100:1793–1798.PubMedCrossRefGoogle Scholar
  5. Eckert, B. S. (1985) Alteration of intermediate filament distribution in PtK cells by acrylamide, Eur. J. Cell. Biol. 37:169–174.PubMedGoogle Scholar
  6. Eckert, B. S., Caputi, S. E., and Warren, R. H. (1984) Dynamics of keratin filaments and the intermediate filament distribution center during shape change in PtK1 cells. Cell Motil. 4:169–182.PubMedCrossRefGoogle Scholar
  7. Eichner, R., Bonitz, P., and Sun, T-T. (1964) Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression, J. Cell Biol. 98:1388–1396.CrossRefGoogle Scholar
  8. Franke, W. W., Schmid, E., Grund, C., and Geiger, B. (1982) Intermediate filament proteins in nonfilamentous structures: Transient disintegration in granular aggregates. Cell 30:103–113.PubMedCrossRefGoogle Scholar
  9. Franke, W. W., Schmid, E., Wellsteed, J., Grund, C., Gigi, O., and Geiger, B. (1983) Change of cytokeratin filament organization during the cell cycle: Selective masking of an immunologic determinant in interphase PtK2 cells, J.Cell Biol. 97:1255–1260.PubMedCrossRefGoogle Scholar
  10. Franke, W. W., Grund, C., Kuhn, C., Lehto, V-F., and Virtanen, I. (1984) Transient change of organization of vimentin filament during mitosis as demonstrated by a monoclonal antibody, Exp. Cell Res. 154:567–580.PubMedCrossRefGoogle Scholar
  11. Franke, W. W., Schmid, E., Mittnacht, S., Grund, C., and Jorcano, J. L. (1984) Intergration of different keratins into the same filament system after microinjection of mRNA for epidermal keratins into kidney epithelial cells. Cell 36:813–825.PubMedCrossRefGoogle Scholar
  12. Georgatos, S. D., Weaver, D. C., and Marches, V. T. (1985) Site specificity in vimentin-membrane interactions: Intermediate filament subunits associate with the plasma membrane via their head domains, J. Cell Biol. 100:1962–1967.PubMedCrossRefGoogle Scholar
  13. Gilfix, B. M., and Eckert, R. L. (1985) Coordinate control by vitamin A of keratin gene expression in human keratinocytes, J. Biol Chem. 260:14026–14029.PubMedGoogle Scholar
  14. Granger, B. L., and Lazarides, E. (1982) Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy, Cell 30:263–275.PubMedCrossRefGoogle Scholar
  15. Hirokawa, N., Glicksman, A., and Willard, M. B. (1984) Organization of mammalian neurofilament polypeptides within the neural cytoskeleton, J. Cell Biol 98:1523–1536.PubMedCrossRefGoogle Scholar
  16. Ip, W., Danto, S. I., and Fischman, D. A. (1983) Detection of desmin-containing intermediate filaments in cultured muscle and nonmuscle cells by immunoelectron microscopy, J.Cell Biol 96:401–408.PubMedCrossRefGoogle Scholar
  17. Jones J. G. R., Goldman, A. E., Yang, H-Y., and Goldman, R. D. (1985) The organizational fate of intermediate filament networks in two epithelial cell types during mitosis, J. Cell Biol 100:93–102.PubMedCrossRefGoogle Scholar
  18. Klymkowsky, M. W. (1981) Intermediate filaments in 3T3 cells collapse after intracellular injection of monoclonal anti-intermediate filament antibody. Nature 291:249–251.PubMedCrossRefGoogle Scholar
  19. Kreis, T., Geiger, B., Schmidt, E., Jorcano, J. L., and Franke, W. W. (1983) De novo synthesis and specific assembly of keratin filaments in nonepithelial cells after microinjection of mRNA for epidermal keratin.Cell 32:1125–1137.PubMedCrossRefGoogle Scholar
  20. Lazarides, E. (1982) Biochemical and immunocytological characterization of intermediate filaments in muscle cells, in Methods in Cell Biology, Vol. 25, The Cytoskeleton, Part B (L. Wilson, ed.). Academic Press, London, pp. 333–357.CrossRefGoogle Scholar
  21. Leterrier, J-F., Liem, R. K. H., and Shelanski, M. L. (1981) Preferential phosphorylation of the 150,000 molecular weight component of neurofilaments by a cyclic AMP-dependent, micro- tubule-associated protein kinase, J.Cell Biol 90:755–760.PubMedCrossRefGoogle Scholar
  22. Murphy, D. B., and Grasser, W. A. (1984) Intermediate filaments in the cytoskeleton of fish chrom- otophores, J. Cell Sci. 66:353–366.PubMedGoogle Scholar
  23. Osborn, M., and Weber, K. (1982) Intermediate filaments: Cell-type-specific markers in differentiation and pathology. Cell 31:303–306.PubMedCrossRefGoogle Scholar
  24. Osborn, M., and Weber, K. (1983) Tumor diagnosis by intermediate filament typing: A novel tool for surgical pathology. Lab. Invest. 48:372–394.PubMedGoogle Scholar
  25. Paulin, D., Babinet, C., Weber, K., and Osborn, M. (1980) Antibodies as probes of cellular differentiation and cytoskeletal organization in the mouse blastocyst, Exp. Cell Res. 130:297–304.PubMedCrossRefGoogle Scholar
  26. Price, M. G., and Sanger, J. W. (1982) Intermediate filaments in striated muscle: A review of structural studies in embryonic and adult skeletal and cardiac muscle, in Cell and Muscle Motility, Vol. 3 (R. W. Dowben and J. W. Shay, eds.). Plenum Press, New York, pp. 1–40.Google Scholar
  27. Schmid, E., Schiller, D. L., Grund, C., Stadler, J., and Franke, W. W. (1983) Tissue type-specific expression of intermediate filament proteins in a cultured epithelial cell line from bovine mammary gland, J. Cell Biol 96:37–50.PubMedCrossRefGoogle Scholar
  28. Sun, T. T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A. (1984) Classification, expression and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model, in Cancer Cells, Vol. 1, The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 169–176.Google Scholar
  29. Tokuyasu, K. T., Dutton, A. H., and Singer, S. J. (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organization in chicken cardiac muscle, J. Cell Biol 96:1736–1742.PubMedCrossRefGoogle Scholar
  30. Tölle, H-G., Weber, K., and Osborn, M. (1986) Microinjection of monoclonal antibodies to vimentin, desmin, and GFA in cells which contain more than one IF type, Exp. Cell Res. 162:462–474.PubMedCrossRefGoogle Scholar
  31. Traub, P., and Nelson, W. J. (1981) Occurrence in various mammalian cells and tissues of the Ca2+-activated protease specific for the intermediate-sized filament proteins vimentin and desmin, Eur. J. Cell Biol 26:61–67.PubMedGoogle Scholar
  32. Tsukita, S., Tsukita, S., and Ishikawa, H. (1983) Association of actin and 10-nm filaments with the dense body in smooth muscle cells of the chicken gizzard. Cell Tissue Res. 229:233–242.PubMedCrossRefGoogle Scholar
  33. Walter, M. F., and Biessmann, H. (1984) Intermediate-sized filaments in Drosophila tissue culture cells, J. Cell Biol 99:1468–1477.PubMedCrossRefGoogle Scholar
  34. Wang, K., and Ramirez-Mitchel, R. (1983) A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle, J.Cell Biol. 96:562–570.PubMedCrossRefGoogle Scholar
  35. Weber, K., Shaw, G., Osborn, M., Debus, E., and Geisler, N. (1983) Neurofilaments, a subclass of intermediate filaments: Structure and expression. Cold Spring Harbor Symp. Quant. Biol. 48:(pt 2) 717–729.PubMedCrossRefGoogle Scholar
  36. Wiche, G., Drepler, R., Artlieb, U., Pytela, R., and Denk, H. (1983) Occurrence and immunolocalization of plectin in tissues, J. Cell Biol. 97:887–901.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations