Cytoskeleton pp 79-131 | Cite as

Systems of Microtubules

  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)


Microtubules, like actin filaments, are universal components of all the eukaryotic cells (Fig. 2.1). Microtubules have the largest diameter of all cytoskeletal fibrils; this diameter is usually about 25 nm. The wall of microtubules is about 5 nm wide. This wall is made of the single protein tubulin. Other proteins are usually attached to the outer surface of the wall of the microtubule: they are called microtubule-associated proteins (MAPs). Dynein is an MAP of special importance because its interaction with tubulin is essential for the motility of cilia and flagella.


Basal Body Primary Cilium Radial Array Tubulin Dimer Cytoplasmic Microtubule 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anderson, K. G. W., and Brenner, R. M. (1971) The formation of basal bodies (centrioles) in the rhesus monkey oviduct, J. Cell Biol. 50:10–34.PubMedCrossRefGoogle Scholar
  2. Bershadsky, A. D., and Gelfand, V. I. (1981) ATP-dependent regulation of cytoplasmic microtubule disassembly, Proc. Natl. Acad. Sci. USA 78:3610–3613.PubMedCrossRefGoogle Scholar
  3. Birrell, G. B., Habliston, D. L., Nadakavukaren, K. K., and Griffith, O. H. (1985) Immunophotoe-lectron microscopy: The electron optical analog of immunofluorescence microscopy, Proc. Natl. Acad. Sci. USA 82:109–113.PubMedCrossRefGoogle Scholar
  4. Bulinski, J. C., and Borisy, G. G. (1979) Self-assembly of microtubules in extracts of cuUured HeLa cells and the identification of HeLa microtubule-associated proteins, Proc. Natl. Acad. Sci. USA 76:293–297.PubMedCrossRefGoogle Scholar
  5. Burton, P. R., and Paige, J. L. (1981) Polarity of axoplasmic microtubules in the olfactory nerve of the frog, Proc. Natl. Acad. Sci. USA 78:3269–3273.PubMedCrossRefGoogle Scholar
  6. Garlier, M-F., and Pantaloni, D. (1981) Kinetic analysis of guanosine 5’-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20:1918–1924.CrossRefGoogle Scholar
  7. Garher, M-F., Hill, T. L., and Ghen, Y. (1984) Interference of GTP hydrolysis in the mechanism of microtubule assembly: An experimental study, Proc. Natl. Acad. Sci. USA 81:771–775.CrossRefGoogle Scholar
  8. Gleveland, D. W., Hwo, S-Y., and Kirschner, M. W. (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol. 116:207–225.CrossRefGoogle Scholar
  9. Dirksen, E. R. (1971) Gentriole morphogenesis in developing ciliated epithelium of the mouse oviduct, J.Cell Biol. 51:286–302.PubMedCrossRefGoogle Scholar
  10. Euteneuer, U., and Mcintosh, J. R. (1981) Polarity of some motility-related microtubules, Proc. Natl. Acad. Sci. USA 78:372–276.PubMedCrossRefGoogle Scholar
  11. Field, D. J., Gollins, R. A., and Lee, J. G. (1984) Heterogeneity of vertebrate brain tubulins, Proc. Natl. Acad. Sci. USA 81:4041–4045.PubMedCrossRefGoogle Scholar
  12. Goodenough, U. W., and Heuser, J. E. (1984) Structural comparison of purified dynein proteins with in situ dynein arms, J. Mol. Biol. 180:1083–1118.PubMedCrossRefGoogle Scholar
  13. Haimo, L. T. (1982) Dynein decoration of microtubules-determination of polarity, in Methods in Cell Biology, Vol. 24 (L. Wilson, ed.), Academic Press, New York, pp. 189–206.Google Scholar
  14. Haimo, L. T., Telzer, B. R., and Rosenbaum, J. L. (1979) Dynein binds to and crossbridges cytoplasmic microtubules, Proc. Natl. Acad. Sci. USA 76:5759–5763.PubMedCrossRefGoogle Scholar
  15. Hirokawa, N. (1982) Gross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method, J. Cell Biol. 94:129–1242.PubMedCrossRefGoogle Scholar
  16. Huber, G., Pehling, G., and Matus, A. (1986) The novel microtubule-associated protein MAP3 contributes to the in vitro assembly of brain microtubules, J.Biol. Chem. 261:2270–2273.PubMedGoogle Scholar
  17. Johnson, K. (1983) The pathway of ATP hydrolysis by dynein, J. Biol. Chem. 258:13825–13832.PubMedGoogle Scholar
  18. Jones, J. G. R., and Tucker, J. B. (1981) Microtubule-organizing centers and assembly of the double-spiral microtubule pattern in certain heliozoan axonemes, J. Cell Sci. 50:259–280.PubMedGoogle Scholar
  19. Krauhs, E., Little, M., Kempf, T., Hofer-Warbinek, R., Ade, W., and Ponstingl, H. (1981) Gomplete amino acid sequence of jö-tubulin from porcine brain, Proc. Natl. Acad. Sci. USA 78:4156–4160.PubMedCrossRefGoogle Scholar
  20. Mitchison, T., and Kirschner, M. (1984) Microtubule dynamics and cellular morphogenesis, in Molecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Gleveland, and D. B. Murphy, eds.), Gold Spring Harbor Laboratory, Gold Spring Harbor, New York, pp. 27–44.Google Scholar
  21. Murray, J. M. (1984) Three-dimensional structure of a membrane-microtubule complex, J. Cell.Google Scholar
  22. Ochs, R. L., and Stearns, M. E. (1981) Colloidal gold immunolabeling of whole-mount erythrophore cytoskeletons: Localization of tubulin and HMW-MAPs, Biol. Cell 42:19–28.Google Scholar
  23. Otter, T., Satir, B. H., and Satir, P. (1984) Trifluorazine-induced changes in swimming behaviorof Paramecium: Evidence for two sites of drug action. Cell Motil 4:249–267.PubMedCrossRefGoogle Scholar
  24. Parysek, L. M., Asnes, C. F, and Olmsted, J. B. (1984) MAP4: Occurrence in mouse tissues, J.Cell Biol. 99:1309–1315.PubMedCrossRefGoogle Scholar
  25. Rosenbaum, J. L., Moulder, J. E., and Ringo, D. L. (1969) Flagellar elongation and shortening in ChJamydomonas; The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins, J. Cell Biol. 41:600–619.PubMedCrossRefGoogle Scholar
  26. Sale, W. S., and Satir, P. (1977) The direction of active sliding of microtubules in Tetrahymena cilia, Proc. Natl. Acad. Sci. USA 74:2045–2049.PubMedCrossRefGoogle Scholar
  27. Schultheiss, R., and Mandelkow, E. (1983) Three-dimensional reconstruction of tubulin sheets and re-investigation of microtubule surface lattice, J. Mol. Biol. 170:471–496.PubMedCrossRefGoogle Scholar
  28. Tamm, S. L. (1984) Alternate patterns of doublet microtubule sliding in ATP-disintegrated macro-cilia of the ctenophore Beroë, J. Cell Biol. 99:1364–1371.PubMedCrossRefGoogle Scholar
  29. Tucker, J. B. (1970) Morphogenesis of a large microtubular organelle and its association with basal bodies in the ciliateNassula, J. Cell Sci. 6:385–429.PubMedGoogle Scholar
  30. Tucker, J. B. (1971) Spatial discrimination in the cytoplasm during microtubule morphogenesis. Nature 232:387–389.PubMedCrossRefGoogle Scholar
  31. Tucker, J. B. (1979) Spatial organization of microtubules, in Microtubules (K. Roberts and J. S. Hyams, eds.). Academic Press, New York, pp. 315–357.Google Scholar
  32. Tucker, J. B. (1984) Spatial organization of microtubule-organizing centres and microtubules, J. Cell Biol. 99:55s-62s.PubMedCrossRefGoogle Scholar
  33. Tucker, J. B., Mathews, S. A., Hendry, K. A. K., Mackie, J. B., and Roche, D. L. J. (1985) Spindle microtubule differentiation and deployment during micronuclear mitosis in Paramecium, J. Cell Biol. 101:1966–1976.PubMedCrossRefGoogle Scholar
  34. Valdivia, M., and Brinkley, B. R. (1984) Biochemical studies of the inetochore centromere of mammalian chromosomes, inMolecular Biology of the Cytoskeleton (G. G. Borisy, D. W. Cleveland, and D. B. Murphy, eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 79–86.Google Scholar
  35. Vallee, R. B. (1984) MAP2 (microtubule-associated protein 2), in Cell and Muscle Motility, Vol. 5, The Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 289–311.Google Scholar
  36. Vallee, R. B., and Bloom, G. S. (1984) High molecular weight microtubule-associated proteins (MAPs), in Modern Cell Biology, Vol. 3 (B. H. Satir, ed.), Liss, New York, pp. 21–75.Google Scholar
  37. Vallee, R. B., Bloom, G. S., and Theurkauf, W. E. (1984) Microtubule-associated proteins: Subunits of the cytomatrix, J. Cell Biol. 99:38s-44s.PubMedCrossRefGoogle Scholar
  38. Voter, W. A., and Erikson, H. P. (1982) Electron microscopy of MAP2 (microtubule-associated protein 2), J. Ultrastruct. Res. 80:374–382.PubMedCrossRefGoogle Scholar

Additional Readings: General reviews

  1. Dustin, P. (1970) Microtubules, Springer-Verlag, New York.Google Scholar
  2. McKeithan, T. W. and Rosenbaum, J. L. (1984) The biochemistry of microtubules: A review, in Cell and Muscle Motility, Vol. 5, The Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 255–288.Google Scholar
  3. Oakley, B. R. (1985) Microtubule mutants, Can. J. Biochem. Cell. Biol. 63:479–488.PubMedGoogle Scholar
  4. Raff, E. C. (1984) Genetics of microtubule system, J. Cell Biol. 99:1–10.PubMedCrossRefGoogle Scholar
  5. Roberts, K., and Hyams, I. S., eds. (1979) Microtubules, Academic Press, New York.Google Scholar

Tubulin; structure of microtubules; polymerization in vitro

  1. Amos, L. A. (1982) Tubulin and associated proteins, in Electron Microscopy of Proteins, Vol. 3 (I. R. Harris, ed), Academic Press, London, New York, pp. 207–250.Google Scholar
  2. Bergen, L. G., and Borisy, G. G. (1980) Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly, J.Cell Biol. 84:141–150.PubMedCrossRefGoogle Scholar
  3. Cleveland, D. W., and Sullivan, K. F. (1985) Molecular Biology and genetics of tubulin, Ann. Rev. Biochem. 54:331–365.PubMedCrossRefGoogle Scholar
  4. Dentler, W. L., Granett, S., Witman, G. B., and Rosenbaum, J. L. (1974) Directionality of brain microtubule assembly in vitro, Proc. Natl. Acad. Sci. USA 71:1710–1740.PubMedCrossRefGoogle Scholar
  5. Detrich, H. W., III, Jordan, M. A., Wilson, L., and Williams, R. C., Jr. (1985) Mechanism of microtubule assembly. Changes in polymer structure and organization during assembly of sea urchin egg tubulin, J. Biol. Chem. 260:9479–9490.PubMedGoogle Scholar
  6. Eichenlaub-Ritter, U., and Tucker, J. B. (1984) Microtubules with more than 13 profilaments in the dividing nuclei of ciliates.Nature 307:60–62.PubMedCrossRefGoogle Scholar
  7. Hill, T. L. (1985) Phase-changing kinetics for a microtubule with two free ends, Proc. Natl. Acad. Sci. USA 82:431–435.PubMedCrossRefGoogle Scholar
  8. Kirchner, K., and Mandelkow, E-M. (1985) Tubulin domains responsible for assembly of dimers and protofilaments, Eur. Mol. Biol. Organ. (EMBO) J. 4:2397–2402.Google Scholar
  9. L’Hernault, S. W., and Rosenbaum, J. L. (1985) Chlamydomonas α-tubulin is posttranslationally modified by acetylation on the €-amino group of a lysine. Biochemistry 24:473–478.PubMedCrossRefGoogle Scholar
  10. Mandelkow, E-M., and Mandelkow, E. (1985) Unstained microtubules studied by cryo-electron microscopy. Substructure, supertwist and disassembly, J. Mol. Biol. 181:123–135.PubMedCrossRefGoogle Scholar
  11. Margolis, R. L., and Wilson, L. (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell 13:1–8.;PubMedCrossRefGoogle Scholar
  12. McEwen, B., and Edelstein, S. J. (1980) Evidence for a mixed lattice in microtubules reassembled in vitro, J. MoL Biol. 139:123–145.PubMedCrossRefGoogle Scholar
  13. Mcintosh, J. R., and Euteneuer, U. (1984) Tubulin hooks as probes for microtubule polarity: An analysis of the method and an evaluation of data on microtubule polarity in the mitotic spindle, J. Cell Biol. 98:525–533.PubMedCrossRefGoogle Scholar
  14. Mitchison, T., and Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312:237–242.PubMedCrossRefGoogle Scholar
  15. Rothwell, S. W., Grasser, W. A., and Murphy, D. B. (1985) Direct observation of microtubule tread-milling by electron microscopy, J. Cell Biol. 101:1637–1642.PubMedCrossRefGoogle Scholar
  16. Thompson, W. C. (1982) The cyclic tyrosinationJdetyrosination of alpha tubulin, in Methods in Cell Biology, Vol. 24 (L. Wilson, ed.). Academic Press, New York, pp. 235–255.Google Scholar
  17. Tilney, L. G., Bryan, J., Bush, D. J., Fujiwara, K., Mooseker, M. S., Murphy, D. B., and Snyder, D. H. (1973) Microtubules: Evidence for thirteen protofilaments, J.Cell. Biol. 59:267–275.PubMedCrossRefGoogle Scholar
  18. Voter, W. A., and Erikson, H. P. (1984) The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism, J. Biol. Chem. 259:10430–10438.PubMedGoogle Scholar
  19. Weisenberg, R. C. (1972) Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177:1104–1105.PubMedCrossRefGoogle Scholar
  20. Weisenberg, R. C., and Deery, W. I. (1976) Role of nucleotide hydrolysis in microtubule assembly. Nature 263:792–793.PubMedCrossRefGoogle Scholar

Microtubule-associated proteins (MAPs); drugs affecting microtubule assembly

  1. Bergen, L. G., and Borisy, G. G. (1983) Tubulin-colchicine complex inhibits microtubule elongation at both plus and minus ends. J.Biol. Chem. 258:4190–4194.PubMedGoogle Scholar
  2. Böhm, J. J., Vater, W., Fenske, H., and Unger, E. (1984) Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro, Biochim. Biophys. Acta 800:119–126.PubMedCrossRefGoogle Scholar
  3. Bulinski, J. C., and Borisy, G. G. (1980) Widespread distribution of 210,000-mol-wt microtubule-associated protein in cells and tissues of primates, J. Cell Biol. 87:802–808.PubMedCrossRefGoogle Scholar
  4. Hoebeke, J., Van Nijen, G., and De Brabander, M. (1976) Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin, Biochem. Biophys. Res. Commun. 69:319–324.PubMedCrossRefGoogle Scholar
  5. Huber, G., Alaimo-Beuret, D., and Matus, A. (1985) MAP3: Characterization of a novel microtubule-associated protein,J. Cell Biol. 100:496–507.PubMedCrossRefGoogle Scholar
  6. Job, D., Pabion, M., and Margolis, R. L. (1985) Generation of microtubule stability subclasses by microtubule-associated proteins: implications for the microtubule “dynamic instability” model, J.Cell Biol. 101:1680–1689.PubMedCrossRefGoogle Scholar
  7. Jordan, M. A., Margolis, R. L., Himes, R. H., and Wilson, L. (1986) Identification of a distinct class of vinblastine binding sites on microtubules, J. Moll. Biol. 187:61–73.CrossRefGoogle Scholar
  8. Kuznetsov, S. A. Rodionov, V. I., Gelfand, V. I., and Rosenblat, V. A. (1981) Microtubule-associated protein MAPI promotes microtubule assembly in vitro,FEBS Lett. 135:241–244.PubMedCrossRefGoogle Scholar
  9. Kuznetsov, S. A., Rodionov, V. I., Gelfand, V. I., and Rosenblat, V. A. (1984) MAP2 competes with MAP1 for binding to microtubules, Biochem. Biophys. Res. Commun. 119:173–178.PubMedCrossRefGoogle Scholar
  10. Lindwall, G., and Cole, R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly, J. Biol. Chem. 259:5301–5305.PubMedGoogle Scholar
  11. Manfredi, J. J., Parness, J., and Horwitz, S. B. (1982) Taxol binds to cellular microtubules, J. Cell Biol 94:688–696.PubMedCrossRefGoogle Scholar
  12. Margolis, R. L., and Wilson, L. (1977) Addition of colchicine-tubulin complex to microtubule ends: The mechanism of substoichiometric colchicine poisoning, Proc. Natl. Acad. Sci. USA 74:3466–3470.PubMedCrossRefGoogle Scholar
  13. Murphy, D. B., Johnson, K. A., and Borisy, G. G. (1977) Role of tubulin-associated proteins in microtubule nucleation and elongation, J. Mol. Biol. 177:33–52.CrossRefGoogle Scholar
  14. Vallee, R. B. (1982) A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs), J. Cell Biol. 92:435–442.PubMedCrossRefGoogle Scholar
  15. Williams, R. F., Mumford, G. L., Williams, G. A. Floyd, L. J., Aivaliotis, M. J., Martinez, R. A., Robinson, A. K., and Barnes, L. D. (1985) A photaffinity derivative of colchicine: 6’-(4’- Azido-2’-nitrophenylamino) hexanoyldeacetylcolchicine. Photolabeling and location of the colchicine-binding site on the a-subunit of tubulin, J.Biol Chem. 260:13794–13802.PubMedGoogle Scholar
  16. Zieve, G., and Solomon, F. (1982) Proteins specifically associated with the microtubules of the mammalian mitotic spindle. Cell 28:233–242.PubMedCrossRefGoogle Scholar
  17. Zingsheim, H. P., Herzog, W., and Weber, K. (1979) Differences in surface morphology of microtubules reconstituted from pure brain tubulin using two different microtubule associated proteins—High molecular weight MAP2 proteins and tau proteins, Eur. J. Cell Biol. 19:175–182.PubMedGoogle Scholar

Dynein and motility of cilia and flagella

  1. Blum, J. J., Hayes, A., Jamieson, G. A., and Vanaman, T. G. (1980) Galmodulin confers calcium sensitivity on ciliary dynein ATPase, J.Cell Biol 87:386–397.PubMedCrossRefGoogle Scholar
  2. Brokaw, G. J., Luck, D. J. L., and Huang, B. (1982) Analysis of the movement of Chlamydomonas flagella: The function of the radial spoke system is revealed by comparison of wild type and mutant flagella, J. Cell Biol 92:722–732.PubMedCrossRefGoogle Scholar
  3. Gibbons, B. H. (1982) Reactivation of sperm flagella: Properties of microtubule-mediated motility, in Methods in Cell Biology, Vol. 25 (L. Wilson, ed.), Academic Press, New York, London, pp. 253–271.Google Scholar
  4. Gibbons, B. H., Bacceti, B., and Gibbons, L R. (1985) Live and reactivated motility in the 9 + 0 flagellum of Anguilla sperm,Cell Motil. 5:333–350.PubMedCrossRefGoogle Scholar
  5. Gibbons, I. R. (1981) Gilia and flagella of eucaryotes, J. Cell Biol 91 (3, pt. 2):107s-124s.PubMedCrossRefGoogle Scholar
  6. Goodenough, U. W., and Heuser, L E. (1985) Substructure of inner dynein arms, radial spokes and the central pairJprojection complex of ciHa and flagella, J. Cell Biol 100:2008–2018.PubMedCrossRefGoogle Scholar
  7. Goodenough, U. W., and Heuser, L E. (1985) Outer and inner dynein arms of cilia and flagella, Cell 41:341–342.PubMedCrossRefGoogle Scholar
  8. Haimo, L. T., and Fenton, R. D. (1984) Microtubule crossbridging by Chlamydomonas dynein, Cell Motil 4:371–385.PubMedCrossRefGoogle Scholar
  9. Hollenbeck, P. J., Suprynowicz, F., and Gande, W. Z. (1984) Cytoplasmic dynein-Hke ATPase cross-links microtubules in an ATP-sensitive manner, J. Cell Biol 99:1251–1258.PubMedCrossRefGoogle Scholar
  10. Johnson, K. A., Porter, M. E., and Shimizu, T. (1984) Mechanism of force production for micro-tubule-dependent movements, J. Cell Biol 99:132s-l36s.PubMedCrossRefGoogle Scholar
  11. Luck, D. J. L. (1984) Genetic and biochemical dissection of the eucaryotic flagellum, J. Cell Biol 98:789–794.PubMedCrossRefGoogle Scholar
  12. Mitchell, D. R., and Rosenbaum, L L. (1985) A motileChlamydomonas flagellar mutant that lacks outer dynein arms, J. Cell Biol 100:1228–1234.PubMedCrossRefGoogle Scholar
  13. Omoto, C. K., and Johnson, K. A. (1986) Activation of the dynein adenosine triphosphatase by microtubules, Biochemistry 25:419–427.PubMedCrossRefGoogle Scholar
  14. Pfister, K. K., Haley, B. E., and Witman, G. B. (1985) Labelling of Chlamydomonas 18S dynein polypeptides by 8-azido adenosine 5’-triphosphate, a photoaffinity analog of ATP, J.Biol Chem. 260:12844–12850.PubMedGoogle Scholar
  15. Piperno, G. (1984) Monoclonal antibodies to dynein subunits reveal the existence of cytoplasmic antigens in sea urchin egg, J. Cell Biol. 98:1842–1850.PubMedCrossRefGoogle Scholar
  16. Sale, W. S., and Gibbons, I. R. (1979) Study of the mechanism of vanadate inhibition of the dynein crossbridge cycle in sea urchin sperm flagella, J. Cell Biol. 82:291–298.PubMedCrossRefGoogle Scholar
  17. Satir, P. (1968) Studies on cilia: further studies on the cilium tip and a “sliding filament” model of ciliary motility, J. Cell Biol. 39:77–94.PubMedCrossRefGoogle Scholar
  18. Summers, K. E., and Gibbons, I. R. (1971) Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm, Proc. Natl. Acad. Sci. USA 68:3092–3096.PubMedCrossRefGoogle Scholar
  19. Tsukita, Sh., Tsukita, S., Usukura, J., and Ishikawa, H. (1983) ATP-dependent structural changes of the outer dyneim arm in Tetrahymena cilia: A freeze-etch replica study, J.Cell Biol. 96:1480–1485.PubMedCrossRefGoogle Scholar
  20. Warner, F. D. (1976) Cross-bridge mechanisms in ciliary motility: The sliding-bending conversion, in Cell Motility, Book G (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 891–914.Google Scholar

Microtubule organizing centers (MTOCs); organization and dynamics of the microtubules in the cell

  1. Brinkley, B. R., Cox, S. M., Pepper, D. A., Wible, L., Brenner, S. L., and Pardue, R. L. (1981) Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells, J. Cell Biol. 90:554–562.PubMedCrossRefGoogle Scholar
  2. Cabral, F., Wible, L., Brenner, S., and Brinkley, B. R. (1983) Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly, J. Cell Biol. 97:30–39.PubMedCrossRefGoogle Scholar
  3. Calarco-Gillam, P. D., Siebert, M. C., Hubble, R., Mitchison, T., and Kirschner, M. (1983) Centrosome development in early mouse embryos as defined by an autoantibody against pericen-triolar material. Cell 35:621–629.PubMedCrossRefGoogle Scholar
  4. Chalfie, M. (1982) Microtubule structure in Caenorhabditis elegans neurons, Cold Spring Harbor Symp. Quant. Biol. 46:255–261.PubMedCrossRefGoogle Scholar
  5. De Brabander, M., Geuens, G., Nuydens, R., Willebords, R., and De May, J. (1981) Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc. Natl. Acad. Sci. USA 78:5608–5612.PubMedCrossRefGoogle Scholar
  6. Deery, W. J., and Brinkley, B. R. (1983) Cytoplasmic microtubule assembly-disassembly from endogenous tubulin in a Brij-lysed cell model, J. Cell Biol. 96:1631–1641.PubMedCrossRefGoogle Scholar
  7. Evans, L., Mitchison, T., and Kirschner, M. (1985) Influence of the centrosome on the structure of nucleated microtubules, J.Cell Biol 100:1185–1191.PubMedCrossRefGoogle Scholar
  8. Gundersen, G. G., Kalnoski, M. H., and Bulinski, J. C. (1984) Distinct populations of microtubules: Tyrosinated and nontyrosinated alpha tubulins are distributed differently in vivo. Cell 38:779–789.PubMedCrossRefGoogle Scholar
  9. Heidemann, S. R., Hamborg, M. A., Thomas, S. J., Song, B., Lindley, S., and Chu, D. (1984) Spatial organization of axonal microtubules, J. Cell Biol. 99:1289–1295.PubMedCrossRefGoogle Scholar
  10. Karsenti, E., Kobayashi, S., Mitchison, T., and Kirschner, M. (1984) Role of the centrosome in organizing the interphase microtubule array: Properties of cytoplasts containing or lacking centrosomes, J. Cell Biol. 98:1763–1776.PubMedCrossRefGoogle Scholar
  11. Keith, C., Di Paola, M., Maxfield, F. R., and Shelanski, M. L. (1983) Microinjection of Ca2+-cal-modulin causes a localized depolymerization of microtubules, J. Cell Biol 97:1918–1924.PubMedCrossRefGoogle Scholar
  12. Miller, M., and Solomon, F. (1984) Kinetics and intermediates of marginal band reformation: evidence for peripheral determinants of microtubule organization, J. Cell Biol. 99:70s-75s.PubMedCrossRefGoogle Scholar
  13. Mitchison, T., and Kirschner, M. (1984) Microtubule assembly nucleated by isolated centrosomes. Nature 312:232–237.PubMedCrossRefGoogle Scholar
  14. Mitchison, T. J., and Kirschner, M. W. (1985) Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding, J.Cell Biol. 101:755–765.PubMedCrossRefGoogle Scholar
  15. Nadezhdina, E. S., Pais, D., and Chentsov, Yu. S. (1979) On the association of centrioles with the interphase nucleus, Eur. J. Cell Biol. 19:109–115.PubMedGoogle Scholar
  16. Osborn, M., and Weber, K. (1976) Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane, Proc. Natl. Acad. Sci. USA 76:867–871.CrossRefGoogle Scholar
  17. Salmon, E. D., Leshe, R. J., Saxton, W. M., Karow, M. L., and Mcintosh, J. R. (1984) Spindle microtubule dynamics in sea urchin embryos: Analysis using a fluorescein-labelled tubulin and measurement of fluorescence redistribution after laser photobleaching, J. Cell Biol. 99:2165–2174.PubMedCrossRefGoogle Scholar
  18. Saxton, W. M., Stemple, D. L., Leslie, R. J., Salmon, E. D., Zavortink, M., and Mcintosh, J. R. (1984) Tubulin dynamics in cultured mammalian cells, J.Cell Biol. 99:2175–2186.PubMedCrossRefGoogle Scholar
  19. Soltys, B. J., and Borisy, G. G. (1985) Polymerization of tubulin in vivo: Direct evidence for assembly onto microtubule ends and from centrosomes, J. Cell Biol. 100:1682–1689.PubMedCrossRefGoogle Scholar
  20. Tassin, A-M., Maro, B., and Bornens, M. (1985) Pate of microtubule-organizing centers during myogenesis in vitro, J. Cell Biol. 100:35–46.PubMedCrossRefGoogle Scholar
  21. Valdivia, M. M., and Brinkley, B. R. (1985) Practionation and initial characterization of the kineto-chore from mammalian metaphase chromosomes, J. Cell Biol. 101:1124–1134.PubMedCrossRefGoogle Scholar
  22. Vorobjev, I. A., and Chentsov, Yu. S. (1982) Centrioles in the cell cycle. 1. Epithelial cells, J. Cell Biol. 98:938–949.CrossRefGoogle Scholar
  23. Wheatley, D. N. (1982) The Centriole: A Central Enigma of Cell Biology, Elsevier, New York.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations