Systems of Actin Filaments

  • Alexander D. Bershadsky
  • Juri M. Vasiliev
Part of the Cellular Organelles book series (CORG)


Actin filaments (Fig. 1.1) are the main components of a large group of cytoskeletal structures. These filaments, also called microfilaments or F-actin (filamentous actin), are polymerized from globular actin monomers (G-actin).


Actin Filament Actin Polymerization Myosin Head Actin Structure Myosin Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baines, A. I. (1984) A spectrum of spectrins, Nature 312:310–311.PubMedCrossRefGoogle Scholar
  2. Bennett, V., Baines, A. I., and Davis, I. Q. (1985) Ankyrin and synapsin: Spectrin-binding proteins associated with brain membranes, J. Cell. Biochem. 29:157–169.PubMedCrossRefGoogle Scholar
  3. Branton, D., Cohen, C. M., and Tyler, J. (1981) Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell 24:24–32.PubMedCrossRefGoogle Scholar
  4. Burridge, K., and Connell, L. (1983) A new protein of adhesion plaques and ruffling membranes, J. Cell Biol. 97:359–367.PubMedCrossRefGoogle Scholar
  5. Burridge, K., Kelly, T., and Connell, L. (1982) Proteins involved in the attachment of actin to the plasma membrane, Phil. Trans. R. Soc. Lond. B 299:291–299.CrossRefGoogle Scholar
  6. Carlier, M-F., Pantaloni, D., and Korn, E. D. (1984) Evidence of an ATP cap at the end of actin filaments and its regulation of the F-actin steady state, J. Biol. Chem. 259:9983–9986.PubMedGoogle Scholar
  7. Carraway, K. L., and Carraway, C. A. C. (1984) Plasma membrane-microfilament interaction in animal cells. Bio Essays 1:55–58.Google Scholar
  8. Chalovich, J. M., and Eisenberg, E. (1982) Inhibition of actomysin ATPase activity by troponin-tropomysin without blocking the binding of myosin to actin, J. Biol. Chem. 257:2432–3437.PubMedGoogle Scholar
  9. Cooper, J. A., Walker, S. B., and Pollard, T. D. (1983) Pyrene actin: Documentation of the validity of a sensitive assay for actin polymerization, J. Muscle Res. Cell Motil. 4:253–262.PubMedCrossRefGoogle Scholar
  10. Craig, S. W., and Pollard, T. D. (1982) Actin-binding proteins. Trends Biochem. Sci. 7:88–92.CrossRefGoogle Scholar
  11. De Rosier, D. J., and Tilney, L. G. (1984) The form and function of actin. A product of its unique design, in Cell and Muscle Motility, Vol. 5, The Cytoskeleton (J. W. Shay, ed.), Plenum Press, New York, pp. 139–169.Google Scholar
  12. Egelman, E. H., and De Rosier, D. J. (1983) A model for F-actin derived from image analysis of isolated filaments, J. Mol. Biol. 166:623–629.CrossRefGoogle Scholar
  13. Egelman, E. H., and Padron, R. (1984) X-ray diffraction evidence that actin is a 100 Ä filament. Nature 307:56–58.CrossRefGoogle Scholar
  14. Geiger, B. (1983) Membrane-cytoskeleton interaction, Biochim. Biophys. Acta 737:305–341.PubMedGoogle Scholar
  15. Goodman, S. R., and Shiffer, K. (1983) The spectrin membrane skeleton of normal and abnormal human erythrocytes: A review, Am. J. Physiol. 244:cl21-cl41.Google Scholar
  16. Heath, J. (1986) Finding the missing links. Nature 320:484–485.PubMedCrossRefGoogle Scholar
  17. Hirokawa, N., Tilney, L. G., Fujiwara, K., and Heuser, J. E. (1982) Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells, J. Cell Biol. 94:425–443.PubMedCrossRefGoogle Scholar
  18. Hirokawa, N., Keller, T. C. S. Ill, Chasan, R., and Mooseker, M. (1983) Mechanism of brush border contractility studied by the quick-freeze deep-etch method, J. Cell Biol. 96:1325–1336.PubMedCrossRefGoogle Scholar
  19. Ip, W., and Heuser, J. (1983) Direct visualization of the myosin crossbridge helices on relaxed rabbit psoas thick filaments, J. Mol. Biol. 171:105–109.PubMedCrossRefGoogle Scholar
  20. Korn, E. D. (1982) Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev. 62:672–737.PubMedGoogle Scholar
  21. Lymn, R. W., and Taylor, E. W. (1971) Mechanism of adenosine triphosphate by actomyosin. Biochemistry 10:4617–4624.PubMedCrossRefGoogle Scholar
  22. Mangeat, P., and Burridge, K. (1984) Actin-membrane interaction in fibroblasts: What proteinsare involved in this association? J. Cell Biol. 99:95s-103s.PubMedCrossRefGoogle Scholar
  23. Maruta, H., Knoerzer, W., Hinssen, H., and Isenberg, G. (1984) Regulation of actin polymerization by non-polymerizable actin-like proteins, Nature 312:424–427.PubMedCrossRefGoogle Scholar
  24. Maruyama, K., Sawada, H., Kimura, S., Ohashi, K., Higuchi, H., and Umazume, Y. (1984) Connectin filaments in stretched skin fibers of frog skeletal muscle, J. Cell Biol. 99:1391–1397.PubMedCrossRefGoogle Scholar
  25. Pollard, T. D., and Cooper J. A. (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions, Annu. Rev. Biochem. 55:987–1035.PubMedCrossRefGoogle Scholar
  26. Sellers, J. R., Pato, M. D. and Adelstein, R. S. (1981) Reversible phosphorylation of smooth muscle myosin, heavy meromyosin and platelet myosin, J. Biol. Chem. 256:13137–13142.PubMedGoogle Scholar
  27. Sheetz, M. P., and Spudich, J. A. (1983) Movement of myosin-coated fluorescent beads on actin cables invitro, Nature 303:31–35.PubMedCrossRefGoogle Scholar
  28. Small, J. V. (1981) Organization of actin in the leading edge of cultured cells: Influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91:695–705.PubMedCrossRefGoogle Scholar
  29. Smith, P. R., Fowler, W. E., Pollard, T. D., and Aebi, U. (1983) Structure of the actin molecule determined from electron micrographs of crystalline actin sheets with a tentative alignment of the molecule in the actin filament, J. Mol Biol. 167:641–660.PubMedCrossRefGoogle Scholar
  30. Speicher, D. W. (1986) The present status of erythrocyte spectrin structure: The 106-residue repetitive structure is a basic feature of an entire class of proteins, J.Cell Biochem. 30:245–258.PubMedCrossRefGoogle Scholar
  31. Spudich, J. A., Pardee, J. D., Simpson, P. A., Yamamoto, K., Kuczmarski, E. R., and Stryer, L. (1982) Actin and myosin: Control of filament assembly, Phyl. Trans. R. Soc. Lond. B299:247–261.CrossRefGoogle Scholar
  32. Stossel, T. P. (1984) Contribution of actin to the structure of the cytoplasmic matrix, J. Cell Biol. 99:15s-21s.PubMedCrossRefGoogle Scholar
  33. Svitkina, T. M., Shevelev, A. A., Bershadsky, A. D., and Gelfand, V. I. (1984) Cytoskeleton of mouse embryo fibroblasts. Electron microscopy of platinum replicas, Eur. J. Cell Biol. 34:64–74.PubMedGoogle Scholar
  34. Taylor, D. L., and Fechheimer, M. (1982) Cytoplasmic structure and contractility: The solation-contraction coupling hypothesis, Phil. Trans. R. Soc. Lond. B. 299:185–197.CrossRefGoogle Scholar
  35. Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) Detection of actin assembly by fluorescence energy transfer, J. Cell Biol 89:362–367.PubMedCrossRefGoogle Scholar
  36. Trinick, J., and Elliott, A. (1979) Electron microscope studies of thick filaments from vertebrate skeletal muscle, J. MoL Biol 131:133–136.PubMedCrossRefGoogle Scholar
  37. Trybus, K. M., and Lowey, S. (1984) Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength, J. Biol. Chem. 259:8564–8571.PubMedGoogle Scholar
  38. Tsukita, S., Tsukita, S., and Ishikawa, H. (1983a) Association of actin and 10 nm filaments with the dense body in smooth muscle cells of the chicken gizzard. Cell Tissue Res. 229:233–242.PubMedCrossRefGoogle Scholar
  39. Tsukita, S., Tsukita, S., Ishikawa, H., Kurokawa, M., Morimoto, K., Sobue, K., and Kakiuchi, S. (1983b) Binding sites of calmodulin and actin on the brain spectrin, calspectin, J. Cell Biol. 97:574–578.PubMedCrossRefGoogle Scholar
  40. Vandekerckhove, L, and Weber, K. (1978a) The amino acid sequence of Physarum actin, Nature 276:720–721.PubMedCrossRefGoogle Scholar
  41. Vanderkerckhove, L, and Weber, K. (1978b) Actin amino acid sequences. Comparison of actins from calf thymus, bovine brain, and SV-40 transformed 3T3 cells with rabbit skeletal muscle actin, Eur. J. Biochem. 90:451–462.CrossRefGoogle Scholar
  42. Weeds, A. (1982) Actin-binding proteins-regulators of cell architecture and motility. Nature 296:811–816.PubMedCrossRefGoogle Scholar
  43. Yanagida, T., Nakase, M., Nishiyama, K., and Oosawa, F. (1984) Direct observation of motion of single F-actin filaments in the presence of myosin. Nature 307:58–60.PubMedCrossRefGoogle Scholar

Additional Readings: Actin; structure of the filament; assembly in vitro

  1. Barden, I. A., Grant, N. J., and Dos Remedios, C. G. (1982) Identification of the nucleus of actin polymerization, Biochem. Intern. 5:685–692.Google Scholar
  2. Bonder, E. M., Fishkind, D. J., and Mooseker, M. S. (1983) Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament, Cell 94:491–501.CrossRefGoogle Scholar
  3. Chang, K. S., Zimmer, W. E., Jr., Bergsma, D. I., Dogdson, I. B., and Schwartz, R. I. (1984) Isolation and characterization of six different chicken actin genes, Mol. Cell Biol. 4:2498–2508.PubMedGoogle Scholar
  4. Egelman, E. H., and De Rosier, D. J. (1983) Structural studies of F-actin, in Actin; Structure and Function in Muscle and Non-muscle Cells (C. Dos Remedios and J. Barden, eds.). Academic Press, Sydney, pp. 17–24.Google Scholar
  5. Fyrberg, E. A., Bond, B. I., Hershey, N. D., Mixter, K. S., and Davidson, N. (1981) The actin genes of Drosophila: Protein coding regions are highly conserved but intron positions are not. Cell 24:107–116.PubMedCrossRefGoogle Scholar
  6. Kaine, B. P., and Spear, B. B. (1982) Nucleotide sequence of a macronuclear gene for actin in Oxytrecha fallax, Nature 295:430–432.PubMedCrossRefGoogle Scholar
  7. Lai, A. A., Brenner, S. L., and Korn, E. D. (1984) Preparation and polymerization of skeletal muscle ADP-actin, J. Biol. Chem. 259:13061–13065.Google Scholar
  8. Mornet, D., and Ue, K. (1984) Proteolysis and structure of skeletal muscle actin, Proc. Natl. Acad. Sci. USA 81:3680–3684.PubMedCrossRefGoogle Scholar
  9. Ng, S-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, I., Shows, T., and Kedes, L. (1985) Evolution of the functional human jÖ-actin gene and its multi-pseudogene family: Conservation of non-coding regions and chromosomal dispersion of pseudogenes, Mol. Cell Biol. 5:2720–2732.PubMedGoogle Scholar
  10. Oosawa, F. (1983) Macromolecular assembly of actin, in Muscle and Nonmuscle Motility, Vol. 1 (A. Stracher, ed.). Academic Press, New York, pp. 151–216.Google Scholar
  11. Pantaloni, D., Hill, T. L., Carlier, M-F., and Korn, E. D. (1985) A model for actin polymerization and the kinetic effects of ATP hydrolysis, Proc. Natl. Acad. Sci USA 82:7207–7211.PubMedCrossRefGoogle Scholar
  12. Pardee, J. D., and Spudich, J. A. (1982) Mechanism of K-induced actin assembly, J. Cell Biol. 93:648–654.PubMedCrossRefGoogle Scholar
  13. Pollard, T. (1984) Polymerization of ADP-actin, J. Cell Biol. 99:769–777.PubMedCrossRefGoogle Scholar
  14. Pollard, T. D., and Craig, S. W. (1982) Mechanism of actin polymerization. Trends Biochem. Sci. 7:55–58.CrossRefGoogle Scholar
  15. Pollard, T. D., and Weeds, A. G. (1984) The rate constant for ATP hydrolysis by polymerized actin, FEBS Lett. 170:94–98.PubMedCrossRefGoogle Scholar
  16. Suck, D., Kasch, W., and Mannherz, H. G. (1981) Three-dimensional structure of the complex of skeletal muscle action and bovine pancreatic DNase I at 6-Ä resolution, Proc. Natl. Acad. Sci. USA 78:4319–4323.PubMedCrossRefGoogle Scholar
  17. Tobacman, L., and Korn, E. D. (1983) The kinetics of actin nucleation and polymerization, J. Biol. Chem. 258:3207–3214.PubMedGoogle Scholar
  18. Vandekerckhove, I., and Weber, K. (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins, J. Mol. Biol. 179:391–413.PubMedCrossRefGoogle Scholar
  19. Wanger, M., Keiser, T., Neuhaus, J-M., and Wegner, A. (1985) The actin treadmill. Can. J. Biochem. Cell Biol. 63:414–421.PubMedGoogle Scholar
  20. Wegner, A. (1976) Head-to-tail actin polymerization, J. Mol. Biol. 108:139–150.PubMedCrossRefGoogle Scholar
  21. Wegner, A., and Engel, J. (1975) Kinetics of the cooperative association of actin to actin filaments, Biophys. Chem. 3:215–225.PubMedCrossRefGoogle Scholar
  22. Woodrum, D. T., Rich, S. A., and Pollard, T. D. (1975) Evidence for the biased bidirectional polymerization of actin using heavy meromyosin produced by an improved method, J. Cell Biol. 67:231–237.PubMedCrossRefGoogle Scholar

Actin-binding proteins; cytochalasins; phalloidin

  1. Atlas, S. I., and Lin, S. (1978) Dihydrocytochalasin B. Biological effects and binding to 3T3 cell, J. Cell Biol. 76:360–370.PubMedCrossRefGoogle Scholar
  2. Bonder, E., and Mooseker, M. S. (1983) Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (villin). A new actin assembly assay using the Limulus actosomal process, s Biol. 96:1097–1107.Google Scholar
  3. Bretscher, A. (1984) Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties, J. Biol. Chem. 259:12873–12880.PubMedGoogle Scholar
  4. Bretscher, A., and Weber, K. (1980) Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures, J. Cell Biol. 86:335–340.PubMedCrossRefGoogle Scholar
  5. Burridge, K., and Feramisco, J. R. (1981) Non-muscle a-actinins are calcium-sensitive actin-binding proteins, Nature 294:565–567.PubMedCrossRefGoogle Scholar
  6. Coluccio, L. M., and Tilney, L. G. (1984) Phalloidin enhances actin assembly by preventing monomer dissociation, J. Cell Biol. 99:529–535.PubMedCrossRefGoogle Scholar
  7. Cooper, J. A., and Pollard T. D. (1985) Effect of capping proteins on the kinetics of actin polymerization, Biochemistry 24:793–799.PubMedCrossRefGoogle Scholar
  8. Di Nubile, M. J., and Southwick, F. S. (1985) Effects of macrophage profilin on actin in the presence and absence of acumentin and gelsolin, J. Biol. Chem. 260:7402–7409.Google Scholar
  9. Gifford, R. G., Weeds, A. G., and Spudich, J. A. (1984) Ca2+-dependent binding of Severin of actin: A one-to-one complex is formed, J. Cell Biol. 98:1796–1803.CrossRefGoogle Scholar
  10. Glenney, J. R., Jr., and Glenney, P. (1983) Fodrin is the general spectrin-like protein found in most cells whereas spectrin and TW protein have a restricted distribution, Cell 34:503–512.PubMedCrossRefGoogle Scholar
  11. Grumet, M., and Lin, S. (1980) A platelet inhibitor protein with cytochalasin-like activity against actin polymerization in vitro, Cell 21:439–444.PubMedCrossRefGoogle Scholar
  12. Kwiatkowski, D. J., Janmey, P. A., Mole, J. E., and Yin, H. L. (1985) Isolation and properties of two actin-binding domains in gelsolin, J. Biol. Chem. 260:15232–15238.PubMedGoogle Scholar
  13. MacLean-Fletcher, S., and Pollard, T. D. (1980) Mechanism of action of cytochalasin B on actin. Cell 20:329–341.PubMedCrossRefGoogle Scholar
  14. Markey, F., Larsson, H., Weber, K., and Lindberg, U. (1982) Nucleation of actin polymerization from profilactin. Opposite effects of different nuclei, Biochem. Biophys. Acta 704:43–51.PubMedCrossRefGoogle Scholar
  15. Matsudaira, P., Jakes, R., and Walker, J. E. (1985) A gelsolin-like Ca2+-dependent actin-binding in villin. Nature 315:248–250.PubMedCrossRefGoogle Scholar
  16. Matsumura, F., and Yamashiro-Matsumura, S. (1985) Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells, J.Biol. Chem. 260:13851–13859.PubMedGoogle Scholar
  17. Payne, M. R., and Rudnick, S. E. (1984) Tropomyosin as a modulator of microfilaments.Trends Biochem. Sci. 9:361–363.CrossRefGoogle Scholar
  18. Sobue, K., Muramoto, Y., Fijita, M., and Kokinchi, S. (1981) Purification of a calmodulin binding protein from chicken gizzard that interacts with F-actin, Proc. Natl. Acad. Sci. USA 78:5652–5655.PubMedCrossRefGoogle Scholar
  19. Southwick, F. S., and Hartwig, J. H. (1982) Acumentin, a protein in macrophages which caps the “pointed” end of actin filaments, Nature 297:303–307.PubMedCrossRefGoogle Scholar
  20. Speicher, D. W., and Marchesi, V. T. (1984) Erythrocyte spectrin is comprised of many homologous triple helical segments. Nature 311:177–180.PubMedCrossRefGoogle Scholar
  21. Stossel, T. P., Hartweg, J. H., Yin, H. L., Zaner, K. S., and Stendahl, O.I. (1982) Actin gelation and the structure of cortical cytoplasm. Cold Spring Harbor Symp. Quant. Biol. 46:569–577.PubMedCrossRefGoogle Scholar
  22. Sutoh, K., and Hatano, S. (1986) Actin-fragmin interactions as revealed by chemical cross-linking. Biochemistry 25:435–440.PubMedCrossRefGoogle Scholar
  23. Tilney, L. G., Bonder, E. M., Coluccio, L. M., and Mooseker, M. S. (1983) Actin from thyone sperm assembles on only one end of an actin filament: A behavior regulated by profilin, J. Cell Biol. 97:112–124.PubMedCrossRefGoogle Scholar
  24. Vandekerckhove, J., Debobin, A., Nassal, M., and Wieland, T. (1985) The phalloidin binding site of F-actin, EMBO J. 4:2815–2818.PubMedGoogle Scholar
  25. Verkhovsky, A. B., Surgucheva, I. G., and Gelfand, V. I. (1984) Phalloidin and tropomyosin do not prevent actin filament shortening by the 90 kD protein-actin complex from brain, Biochem. Biophys. Res. Commun. 123:596–603.PubMedCrossRefGoogle Scholar
  26. Verner, K., and Bretscher, A. (1985) Microvillus llOK-calmodulin: Effects of nucleotides on isolated cytoskeletons and the interaction of the purified complex with F-actin, J. Cell Biol. 100:1455–1465.PubMedCrossRefGoogle Scholar
  27. Weber, K., and Glenney, Jr., J. R. (1982) Calcium-modulated multifunctional proteins regulating F-actin organization, Cold Spring Harbor Symp. Quant. Biol. 46:541–551.PubMedCrossRefGoogle Scholar
  28. Wegner, A. (1982) Kinetic analysis of actin assembly suggests that tropomyosin inhibits spontaneous fragmentation of actin filaments, J. Mol. Biol. 161:217–227.PubMedCrossRefGoogle Scholar
  29. Weihing, R. R. (1985) The filamins: Properties and functions, Can. J. Biochem. Cell Biol. 63:397–413.PubMedGoogle Scholar
  30. Wieland, T. (1977) Modification of actins by phallotoxins, Naturwissenschaften 64:303–309.PubMedCrossRefGoogle Scholar
  31. Yonezawa, N., Nishida, E., and Sakai, H. (1985) pH control of actin polymerization by cofilin, J. Biol. Chem. 260:14410–14412.PubMedGoogle Scholar

Myosins; actin-myosin interaction and its regulation; cell contractility

  1. Adelstein, R. S., Pato, M. D., Sellers, J. R., de Lanerolle, P., and Conti, M. A. (1982) Regulation of actin-myosin interaction by reversible phosphorylation of myosin and myosin kinase. Cold Spring Harbor Symp. Quant. Biol. 46:921–928.PubMedCrossRefGoogle Scholar
  2. Bagshaw, C. R. (1982) Muscle Contraction, Chapman and Hall, London, New York.Google Scholar
  3. Cande, W. Z., Tooth, P. J., and Kendrick-Jones, J. (1983) Regulation of contraction and thick filament assembly-disassembly in glycerinated vertebrate smooth muscle cells, J. Cell Biol. 97:1062–1071.PubMedCrossRefGoogle Scholar
  4. Chen, T., Applegate, D., and Reisler, E. (1985) Cross-linking of actin to myosin subfragment 1: Course of reaction and stoichiometry of products, Biochemistry 24:137–144.PubMedCrossRefGoogle Scholar
  5. Craig, R., Smith, R., and Kendrick-Jones, J. (1983) Light chain phosphorylation controls the conformation of vertebrate non-muscle myosin and smooth muscle myosin molecule, Nature 302:436–439.PubMedCrossRefGoogle Scholar
  6. Crow, M. T., and Stockdale, F. E. (1984) Myosin isoforms and the cellular basis of skeletal muscle development, Exp. Biol. Med. 9:165–174.Google Scholar
  7. Eisenberg, E., and Hill, T. L. (1985) Muscle contraction and free energy transduction in biological systems. Science 227:999–1006.PubMedCrossRefGoogle Scholar
  8. Engelhardt, V. A., and Ljubimova, M. N. (1939) Myosin and adenosinetriphosphatase. Nature 144:668–669.CrossRefGoogle Scholar
  9. Epstein, H. F., Miller, D. M., III, Ortiz, L, and Berliner, G. C. (1985) Myosin and paramyosin are organized about a newly identified core structure, J. Cell Biol. 100:904–915.PubMedCrossRefGoogle Scholar
  10. Flicker, P. F., Phillips, Jr., G. N., Cohen, C. (1982) Troponin and its interactions with tropomyosin, an electron microscope study, J.Mol. Biol. 162:495–501.PubMedCrossRefGoogle Scholar
  11. Flicker, P. F., Peltz, G., Sheetz, M. P., Parham, P., and Spudich, J. A. (1985) Site-specific inhibition of myosin-mediated motility in vitro by monoclonal antibodies, J.Cell Biol. 100:1024–1030.PubMedCrossRefGoogle Scholar
  12. Fujusaki, H., Albanesi, J. P., and Korn, E. D. (1985) Experimental evidence for the contractile activities of Acanthamoeba myosins IA and IB, J. Biol. Chem. 260:11183–11189.Google Scholar
  13. Goody, R. S., and Holmes, K. C. (1983) Crossbridges and the mechanism of muscle contraction, Biochem. Biophys. Acta 726:13–39.PubMedGoogle Scholar
  14. Harrington, W. F. (1979) On the origin of the contractile force in skeletal muscle, Proc. Natl. Acad. Sci. USA 76:5066–5070.PubMedCrossRefGoogle Scholar
  15. Huxley, H. E. (1983) Molecular basis of contraction in cross-striated muscles and relevance to motile mechanisms in other cells, in Muscle and Nonmuscle Motility, Vol. 1 (A. Stracher, ed.), Academic Press, New York, pp. 1–104.Google Scholar
  16. Huxley, H. E., and Hanson, H. J. (1954) Changes in the cross striations of muscle during contraction and stretch and their structural interpretation.Nature 173:973–976.PubMedCrossRefGoogle Scholar
  17. Huxley, A. F., and Niedergerke, R. (1954) Structural changes in muscle during contraction. Interference microscopy of living muscle fibers. Nature 173:971–973.PubMedCrossRefGoogle Scholar
  18. Kiehart, D. P., and Pollard, T. D. (1984) Inhibition of Acanthamoeba actomyosin-II ATPase activity and mechanichemical function by specific monoclonal antibodies, J. Cell Biol. 99:1024–1033.PubMedCrossRefGoogle Scholar
  19. Kuczmarski, E. R., and Pardee, J. D. (1983) Actin and myosin fromDictyostelium amoebae, in Cell and Muscle Motility, Vol. 4 (R. M. Dowben and J. W. Shay, eds.). Plenum Press, New York, London, pp. 269–316.Google Scholar
  20. Leavis, P. C., and Gergely, J. (1984) Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction, CRC Crit. Rev. Biochem. 16:235–305.PubMedCrossRefGoogle Scholar
  21. Mahdavi, V., Chambers, A. P., and Nadal-Ginard, B. (1984) Cardiac a-and jö-myosin heavy chain genes are organized in tandem, Proc. Natl. Acad. Sci. USA 81:2626–2630.PubMedCrossRefGoogle Scholar
  22. Masuda, H., Owaribe, K., Hayashi, H., and Hatano, S. (1984) Ca2+-dependent contraction of human lung fibroblasts treated with triton X-100: A role of Ca2+-calmodulin-dependent phosphorelation of myosin 20,000-dalton light chain. Cell Motil. 4:315–331.PubMedCrossRefGoogle Scholar
  23. Miller, D. M., Ortiz, L., Berliner, G. C., and Epstein, H. F. (1983) Differential locahzation of two myosins within nematode thick filaments.Cell 34:477–490.PubMedCrossRefGoogle Scholar
  24. Nag, A. C., Cheng, M., and Zak, R. (1985) Distribution of isomyosin in cultured cardiac myocytes as determined by monoclonal antibodies and adenosine triphosphate activity, Exp. Cell Res. 158:53–62.PubMedCrossRefGoogle Scholar
  25. Ngai, P. K., and Walsh, M. P. (1984) Inhibition of smooth muscle actin-activated myosin Mg2+ ATPase activity by caldesmon, J. Biol. Chem. 259:13656–13659.PubMedGoogle Scholar
  26. Onishi, H., and Wakabayashi, T. (1984) Electron microscopic studies on myosin molecules from chicken gizzard muscle. III. Myosin dimers, J. Biochem. 95:903–905.PubMedGoogle Scholar
  27. Pepe, F. A. (1983) Macromolecular assembly of myosin, in MuscJe and Nonmuscle Motility, Vol. 1 (A. Stracher, ed.). Academic Press, New York, pp. 105–149.Google Scholar
  28. Reines, D., and Clarke, M. (1985) Immunochemical analysis of the supramolecular structure of myosin in contractile cytoskeletons of Dictyostellium amoebae, J. Biol. Chem. 260:14248–14254.PubMedGoogle Scholar
  29. Reisler, E., Cheung, P., Borochov, N., and Lake, J. A. (1986) Monomers, dimers and minifilaments of vertebrate skeletal myosin in the presence of sodium pyrophosphate, Biochemistry 25:326–332.PubMedCrossRefGoogle Scholar
  30. Rosenfeld, S. S., Taylor, E. W. (1984) The ATPase mechanism of skeletal and smooth muscle acto-subfragment 1, J. Biol. Chem. 259:11908–11919.PubMedGoogle Scholar
  31. Sellers, R. (1985) Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin, J.Biol. Chem. 260:15815–15819.PubMedGoogle Scholar
  32. Sellers, J. R., Spudich, J. A., and Sheetz, M. P. (1985) Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments, J.Cell Biol. 101:1897–1902.PubMedCrossRefGoogle Scholar
  33. Spudich, J. A., Kron, S. J., and Sheetz, M. P. (1985) Movement of myosin coated beads on oriented filaments reconstituted from purified actin. Nature 315:584–586.PubMedCrossRefGoogle Scholar
  34. Squire, J. M. (1981) The StructuralBasis of Muscular Contraction, Plenum Press, New York.CrossRefGoogle Scholar
  35. Squire, J. M. (1983) Molecular mechanisms in muscular contraction. Trends Neurosci. 6:409–413.Google Scholar
  36. Squire, J. M. (1986) Muscle myosin filaments: Internal structure and crossbridge organization. Comments Mol. Cell. Biophys. 3:155–177.Google Scholar
  37. Waller, S., and Lowey, S. (1985) Myosin subunit interactions. Localization of the alkali light chains, J. Biol. Chem. 260:14368–14373.Google Scholar
  38. Weydert, A., Daubas, P., Lazaridis, I., Barton, P., Garner, I., Leader, D. P., Bonhomme, F., Catalan, J., Simon, D., Guenet, J. L., Gros, F., and Buckingham, M. E. (1985) Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene, Proc. Natl. Acad. Sci. USA 82:7183–7187.PubMedCrossRefGoogle Scholar

Actin structures; dynamics of actin in the cell

  1. Bennett, V. (1985) The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54:273–304.PubMedCrossRefGoogle Scholar
  2. Bershadsky, A. D., Gelfand, V. I., Svitkina, T. M., and Tint, I. S. (1980) Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism, Exp. Cell Res. 127:421–429.PubMedCrossRefGoogle Scholar
  3. Bond, M., and Somlyo, A. V. (1982) Dense bodies and actin polarity in vertebrate smooth muscle, J. Cell Biol. 95:403–413.PubMedCrossRefGoogle Scholar
  4. Byers, H. R., White, G. E., and Fujiwara, K. (1984) Organization and function of stress fibers in cells in vitro and in situ: A review, in Cell and Muscle Motility, Vol. 5, The Cytoskeleton (J. W. Shay, ed.). Plenum Press, New York, London, pp. 83–137.Google Scholar
  5. Byers, T. J., and Branton, D. (1985) Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 82:6153–6157.PubMedCrossRefGoogle Scholar
  6. Craig, S. W., and Pardo, J. V. (1983) Gamma actin, spectrin, and intermediate filaments proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites, Cell Motil. 3:449–462.PubMedCrossRefGoogle Scholar
  7. Geiger, B., Avnur, Z., Rinnerthaler, L., Kinssen, H., and Small, V. J. (1984) Microfilament-organiz-ing centers in areas of cell contact: Cytoskeletal interactions during cell attachment and locomotion, J.Cell Biol. 99:83s-91s.PubMedCrossRefGoogle Scholar
  8. Glacy, S. D. (1983) Pattern and time course of rhodamine-actin incorporation in cardiac myocytes, J.Cell Biol. 96:1164–1167.PubMedCrossRefGoogle Scholar
  9. Hartwig, J. H., Niederman, R., and Lind, S. E. (1985) Cortical actin structures and their relationship to mammalian cell movements, in Subcellular Biochemistry, Vol. 11 (D. B. Roodyn, ed.). Plenum Press, New York, Chapter 1, pp. 1–49.Google Scholar
  10. Heuser, J. E., and Kirschner, M. W. (1980) Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol 86:212–234.PubMedCrossRefGoogle Scholar
  11. Ishikawa, H. (1983) Fine structure of skeletal muscle, in Cell and Muscle Motility, Vol. 4 (R. M. Dowben and J. W. Shay, eds.), Plenum Press, New York, pp. 1–84.Google Scholar
  12. Ishikawa, H., Bischoff, R., and Holtzer, H. (1969) Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol 43:312–328.PubMedCrossRefGoogle Scholar
  13. Kreis, T. E., Geiger, B., and Schlessinger, J. (1982) Mobility of microinjected rhodamine-actin within living chicken gizzard cells determined by fluorescence photoblenching recovery, Cell 29:835–845.PubMedCrossRefGoogle Scholar
  14. Langanger, G., De Mey, J., Moeremans, M., Daneels, G., DeBrabander, M., and Small, J. V. (1984) Ultrastructural localization of a-actinin and filamin in cultured cells with the immunogold staining (IGS) method, J.Cell Biol 99:1324–1334.PubMedCrossRefGoogle Scholar
  15. Lazarides, E. (1976) Two general classes of cytoplasmic actin filaments in tissue culture cells: The role of tropomyosin, J. Supramol Struct. 5:531(383)-563(415).PubMedCrossRefGoogle Scholar
  16. Mooseker, M. S., Bonder, E. M., Conzelman, K. A., Fishkind, D. J., Howe, C. L., and Keller, III, C. S. (1984) Brush border cytoskeleton and integration of cellular functions, J. Cell Biol 99:104s-112s.PubMedCrossRefGoogle Scholar
  17. Sanger, J. W., Mittal, B., and Sanger, J. M. (1984) Analysis of myofibrillar structure and assembly using fluorescently labelled contractile proteins, J. Cell Biol 98:825–833.PubMedCrossRefGoogle Scholar
  18. Schlessinger, J., and Geiger, B. (1983) The dynamic interrelationships of actin and vinculin in cuhured cells, Cell Motil 3:399–403.PubMedCrossRefGoogle Scholar
  19. Schliwa, M. (1982) Action of cytochalasin D on cytoskeletal networks, J. Cell Biol 92:79–91.PubMedCrossRefGoogle Scholar
  20. Stidwill, R. P., Wysolmerski, T., and Burgess, D. R. (1984) The brush border cytoskeleton is not static: In vivo turnover of proteins, J. Cell Biol 98:641–645.PubMedCrossRefGoogle Scholar
  21. Tilney, L. G., and Tilney, M. S. (1984) Observation on how actin filaments become organized in cells, J.Cell Biol 99:76s-82s.PubMedCrossRefGoogle Scholar
  22. Tilney, L. G., Bonder, E. M., and De Rosier, D. J. (1981) Actin filaments elongate from their membrane-associated ends, J. Cell Biol 90:485–494.PubMedCrossRefGoogle Scholar
  23. Wang, Y-L., Lanni, F., McNeil, P. L., Ware, B. R., and Taylor, D. L. (1982) Mobility of cytoplasmic and membrane-associated actin in living cells, Proc. Natl. Acad. Sci. USA 79:4660–4664.PubMedCrossRefGoogle Scholar
  24. Wehland, J., and Weber, K. (1980) Distribution of fluorescently labelled actin and tropomyosin after microinjection in living tissue cultured cells as observed with TV image intensification, Exp. Cell Res. 127:397–408.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alexander D. Bershadsky
    • 1
  • Juri M. Vasiliev
    • 1
  1. 1.Cancer Research CenterMoscow State UniversityMoscowUSSR

Personalised recommendations