Single Molecule Electron Crystallography

  • Marin van Heel
Part of the NATO ASI Series book series (NSSA, volume 126)


Electron microscopy provides us directly with images of biological macromolecules rather than with diffraction patterns. This implies that we not only obtain the amplitudes of the objects’ Fourier components but also their phases. Moreover, the instrumental resolution of modern electron microscopes is better than 2 Angstrom which is sufficient for the recognition of the amino-acid residues of a polypeptide chain. With the electron microscope being such an ideal instrument for the elucidation of protein structure, one would wonder why X-ray crystallography still exists.


Original Image Optimal Partition Computer Image Processing Original Data Space Hierarchical Ascendant Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.J. DeRosier and A. Klug, Nature 217 (1968) 130–134.CrossRefGoogle Scholar
  2. 2.
    P.N.T. Unwin and R. Henderson, J. Mol. Biol. 94 (1975) 425–440.PubMedCrossRefGoogle Scholar
  3. 3.
    J. Baldwin and R. Henderson, these proceedings.Google Scholar
  4. 4.
    T.L. Blundell and L.N. Johnson, Protein Crystallography, (1976) Academic Press, New York.Google Scholar
  5. 5.
    J.Frank., W. Goldfarb, D. Eisenberg, and T.S. Baker, Ultramicroscopy 3 (1978) 283–290.PubMedCrossRefGoogle Scholar
  6. 6.
    M. Steinkilberg und H.J. Schramm, Hoppe-Seyler’s Z. Physiol. Chem. 361 (1980) 1363–1369.PubMedCrossRefGoogle Scholar
  7. 7.
    J. Frank, A. Verschoor and M. Boublik, Science 214 (1981) 1353–1355.PubMedCrossRefGoogle Scholar
  8. 8.
    W.O. Saxton and J. Frank, Ultramicroscopy 2 (1977) 219–227.PubMedCrossRefGoogle Scholar
  9. 9.
    J.-P. Benzécri, L’Analyse des Données, Vol 2: L’Analyse des Correspodances, (1980) Dunod, Paris.Google Scholar
  10. 10.
    L. Lebart, A. Morineau and N. Tabard, Techniques de la Description Statistique (Dunod, Paris, 1977).Google Scholar
  11. 11.
    M. van Heel and J. Frank, Ultramicroscopy 6 (1981) 187–194.PubMedGoogle Scholar
  12. 12.
    M. van Heel and W. Keegstra, Ultramicroscopy 7 (1981) 113–130.CrossRefGoogle Scholar
  13. 13.
    J. Frank, A. Verschoor and M. Boublik, J.Mol.Biol. 161 (1982) 107–137.PubMedCrossRefGoogle Scholar
  14. 14.
    M.M.C. Bijlholt, M.G. van Heel and E.F.J. van Bruggen, J. Mol. Biol. (1982) 161, 139–153.PubMedCrossRefGoogle Scholar
  15. 16.
    M. van Heel, Ultramicroscopy 13 (1984) 165–184.PubMedCrossRefGoogle Scholar
  16. 17.
    M. van Heel and M. Stöffler-Meilicke, EMB0 Journal 4 (1985) 2389–2395.Google Scholar
  17. 18.
    A. Rosenfeld and A.C. Kak, Digital Picture Processing, Vol 1, 2nd ed., Academic press (1982): Chap. 5–10.Google Scholar
  18. 19.
    F. Benzécri, Les Cahiers de l’Analyse des Données 5 (1980) 311.Google Scholar
  19. 20.
    J.-P. Benzécri, M. Danech Pejouh, T. Moussa and J.-P. Romeder, Les Cahiers de l’Analyse des Données 4 (1977) 369–406.Google Scholar
  20. 21.
    M. van Heel, J.P. Bretaudière and J. Frank, Proc. of 10th Int. Congr. on Elec. Mic, Hamburg 1982, Vol. 1, 563–564.Google Scholar
  21. 22.
    M. van Heel, Proc. of 8th Eur. Congr. on Elec. Mic., Budapest 1984, Volume 2, p 1347–1348.Google Scholar
  22. 23.
    G. Harauz and M. van Heel, in: Pattern Recognition in Practice II, Eds. Gelsema and Kanal, North-Holland (1985), in press.Google Scholar
  23. 24.
    G. Harauz and M. van Heel, submitted to 0PTIK.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Marin van Heel
    • 1
  1. 1.Fritz Haber Institute of the Max Planck SocietyBerlin-DahlemWest Germany

Personalised recommendations