Advertisement

Relation between Functional Loop Regions and Intron Positions in α/ß Domains

  • Carl-Ivar Bränden
Part of the NATO ASI Series book series (NSSA, volume 126)

Abstract

It is generally recognised that protein molecules are arrangend into small folding units domains. We now have a sufficiently large sample of three dimensional structures to realise that there is only a limited number of different folding patterns for such domains (Richardson, 1981). The most common type of these patterns are the α/ß domains which comprise around 25% of all known domain structures. The central fold of these domains is \/ery simple consisting of a number of hydrogen bonded parallel strands joined by helices. The strands all have their NH2 ends at the same edge of the resulting ß-sheet. The sheet thus has a polarity with an NH2-edge and a C00H edge. Loop regions, which are usually relatively short, join the strands to the helices at both ends.

Keywords

Active Site Residue Triosephosphate Isomerase Intron Position Functional Residue Glyceraldehyde Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.J., Ford, G.C., Koekok, R., Lentz, P.J.Jr., Mc Pherson, A. Jr., Rossmann, M.G., Smiley, I.E., Schevitz, R.W. and Wonnocott, A.J. (1970) Structure of lactate dehydrogenase at 2.8 A resolution, Nature 227:1103.CrossRefGoogle Scholar
  2. Banner, D.W., Bloomer, H.C., Petsko, G.A., Phillips, D.C., Pogson, C.I. and Wilson, A.I. (1975) Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 A resolution, Nature 255:609–614.PubMedCrossRefGoogle Scholar
  3. Blake, C.C.F. (1985) Exons and the evolution of proteins, Int. Rev. Cytol. 93:149–185.PubMedCrossRefGoogle Scholar
  4. Branden, C.-I. (1980) Relation between structure and function of ß-proteins, Quart. Revs. Biophys. 13:317–338.CrossRefGoogle Scholar
  5. Bränden, C.-I., Eklund, H., Cambillau, C. and Pryor, A.J. (1984), Correlation of exons with structural domains in alcohol dehydrogenase, EMBO J 3:1307–1310PubMedGoogle Scholar
  6. Branden, C.-I. (1986), The relation between protein structure in ß domains and intron-exon arrangement of the corresponding genes in Nobel Proceedings on Molecular Evolution of life (ed. H. Jörnvall) in press.Google Scholar
  7. Buehner, M., Ford, G., Moras, D., Olsen, K.W. and Rossmann, M. (1974), Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase, J. Mol . Biol. 90:25–49.PubMedCrossRefGoogle Scholar
  8. Carrel, H.L., Rubin, B.H., Hurley, T.J. and Glusker, J.P. (1984) X-ray crystal structure of D-xylose isomerase at 4 A resolution, J. Biol. Chem. 259:3230–3236.Google Scholar
  9. Dennis, E.S., Gerlach, W.L., Pryor, A.J., Bennetzen, J.L., Inglis, A., Llewellyn, D., Sachs, M.M., Ferl, J.R. and Peacock, W.J. (1984) Molecular analysis of the alcohol dehydrogenae (ADH 1) gene of maize, Nucl.Acids.Res. 12:3983–4000.PubMedCrossRefGoogle Scholar
  10. Eklund, H., Nordström, B., Zeppezauer, E., Söderlund, G., Ohlsson, I., Boiwe, T., Söderberg, B.-O., Tapia, O., Branden, C. I. and Akeson, A. (1976), Three-dimensionnal structure of horse liver alcohol dehydrogenase at 2.4 A resolution. J.Mol.Biol.102:27–59.PubMedCrossRefGoogle Scholar
  11. Gilbert, W. (1978) Why genes in pices ?, Nature 271:501.PubMedCrossRefGoogle Scholar
  12. Gilbert, W. (1985) reported at the second Bio-Technology- Waksman Institute Symposium (see Bialy,H. Genetic engineering in the precambrion), Biotechnology 3:516.CrossRefGoogle Scholar
  13. Lebiode, D.L., Hatada, M.H., Tulinsky, A. and Mavridis, I.M. (1982) Comparison of the folding of 2-keto-3-deoxy-6 phosphogluconate aldolase, triosephosphate isomerase and pyruvate kinase, J.Mol.Biol. 162:445–458.CrossRefGoogle Scholar
  14. Li, S., Tiano, H.F., Fukasawa, K.M., Yagi, K., Shimizu, M., Sharief, F.S., Nakashima, Y. and Pan, Y. (1985) Protein structure and gene organization of mouse lactate dehydrogenase-A isozyme, Eur. J. Biochem. 149:215–225.PubMedCrossRefGoogle Scholar
  15. Lindqvist, Y. and Branden, C.-I. (1985) Structure of gyco-late oxidase from spinach, Proc. Natl. Acad. Sci. USA 82:in press.Google Scholar
  16. Lonberg, N. and Gilbert, W. (1985) Intron/exon structure of the chicken pyruvate kinase gene, Cell 40:81–90.PubMedCrossRefGoogle Scholar
  17. Matsuura, Y., Kusunoki, M., Harada, W., Tanaka, N., Iga, Y., Yasuoka, N., Toda, H., Narita, K. and Kakuda, M. (1980) Molecular structure of Taka-amylase A. Backbone chain folding at 3 A resolution, J.Biochem. (Tokyo) 87:1555–1558.Google Scholar
  18. Richardson, J.S. (1981) The anatomy and taxonomy of protein structure, Adv.Protein Chem. 34:167–339.PubMedCrossRefGoogle Scholar
  19. Schneider, G., Lindqvist, Y., Anderson, I., Knight, S.,Google Scholar
  20. Branden, C.-I. and Lorimer, G. (1986) X-ray structural studies of Rubisco from Rhodospirillum rubrum and spinach, Proc.Roy.Soc.Trans, in press.Google Scholar
  21. Stone, E.M., Rothblum, K.N., Alevy, M.C., Kuo, T.M. and Schwartz, R.J. (1985), Complete sequence of the chicken glyceraldehyde-3-phosphate dehydrogenase gene, Proc. Natl.Acad.Sci. USA 82:1628–1632.PubMedCrossRefGoogle Scholar
  22. Stuart, D.I., Levine, M., Muirhead, H. and Stammers, D.K. (1979), Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A., J.Mol.Biol. 134:109–142.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Carl-Ivar Bränden
    • 1
  1. 1.Department of Molecular BiologySwedish University of Agricultural Sciences, Uppsala Biomedical CenterUppsalaSweden

Personalised recommendations