Structural Studies of ECO RV Endonuclease and of its Complexes with Short DNA Fragments

  • Fritz K. Winkler
  • Raymond S. Brown
  • Kevin Leonard
  • John Berriman
Part of the NATO ASI Series book series (NSSA, volume 126)


Many bacteria restrict the expression of foreign DNA introduced through phage infection, conjugation or transformation. At the molecular level such host-controlled restriction is the result of an endonuclease activity which cuts foreign DNA and a modification activity which protects the host’s DNA against this cleavage. Of the three types of restriction-modification systems usually distinguished the type II systems are the simplest and consist of two separate enzymes, an endonuclease and a methylase which recognize the same sequence of typically 4 to 6 base pairs. The endonucleases cleave double stranded DNA at these recognition sites in the presence of Mg2+ ions. Their remarkable specificity and its modulation by various factors make them attractive systems for structurally oriented studies of protein nucleic acid interactions (for a recent review see Modrich and Roberts1).


Molecular Replacement Twofold Axis Helix Axis Wire Model Protein Nucleic Acid Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. Modrich and R.J. Roberts, in: “Nucleases”, M. Linn and R.J. Roberts, eds., Cold Spring Harbor Laboratory, New York (1982).Google Scholar
  2. (2).
    A. Pingoud and J. Alves, personnel communication.Google Scholar
  3. (3).
    A. Pingoud, Eur. J. Biochem. 147: 105 (1985).PubMedCrossRefGoogle Scholar
  4. (4).
    B. Polisky, P. Greene, D. Garfin, B. McCarthy, H. Goodman and H. Boyer, Proc. Natl. Acad. Sci. USA 72 : 3310 (1975).PubMedCrossRefGoogle Scholar
  5. (5).
    R.C. Gardner, A.J. Howarth, J. Messing and R.J. Sheperd, DNA 1 : 109 (1982).PubMedCrossRefGoogle Scholar
  6. (6).
    B.J. Terry, W.E. Jack, R.A. Rubin and P. Modrich, J. Biol. Chem., 258 : 9820 (1983).PubMedGoogle Scholar
  7. (7).
    A.D. Frankel, G.K. Ackers and H.O. Smith, Biochemistry 24 3049 (1985).PubMedCrossRefGoogle Scholar
  8. (8).
    C.A. Frederick, J. Grable, M. Melia, J. Samudzi, L. Jen-Jacobsen, B.-C. Wang, P. Greene, H.W. Boyer and J.M. Rosenberg, Nature 309 : 327 (1984).PubMedCrossRefGoogle Scholar
  9. (9).
    G.V. Kholmina, B.A. Rebentish, Y.S. Skoblov, A.A. Mironov, Y. Yankovskii, Y.I. Kozlov, L.I. Glatman, A.F. Moroz and V.G. Debabov, Dokl. Akad. Nauk. SSSR 253 : 495 (1980).PubMedGoogle Scholar
  10. (10).
    I. Schildkraut, C.D.B. Banner, C.S. Rhodes and S. Parekh, Gene 27 : 327 (1984).PubMedCrossRefGoogle Scholar
  11. (11).
    L. Bougueleret, M. Schwarzstein, A. Tsugita and M. Zabeau, Nucleic Acids Res. 12 : 3659 (1984).PubMedCrossRefGoogle Scholar
  12. (12).
    L. Bougueleret, M.L. Tenchini, J. Botterman and M. Zabeau, Nucleic Acids Res. 13 : 3823 (1985).PubMedCrossRefGoogle Scholar
  13. (13).
    A. D’Arcy, R.S. Brown, M. Zabeau, R. Wijnaendts van Resandt and F.K. Winkler, J. Biol. Chem. 260 : 1987 (1985).PubMedGoogle Scholar
  14. (14).
    F.K. Winkler, J. van Boom, H. Blöcker and R. Frank, in preparation for J. Mol. Biol.Google Scholar
  15. (15).
    G. Bricogne, Acta Cryst. A32 : 832 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Fritz K. Winkler
    • 1
  • Raymond S. Brown
    • 1
  • Kevin Leonard
    • 1
  • John Berriman
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergFederal Republic of Germany

Personalised recommendations