Advertisement

Synchrotron Radiation and Macromolecular Crystallography

  • R. Fourme
  • R. Kahn
Part of the NATO ASI Series book series (NSSA, volume 126)

Abstract

It is hardly necessary to underline that synchrotron radiation (SR) is a tool which is now commonly used in the field of macromolecular crystallography. During this conference, many new structures presented in oral communications or posters involved the use of a SR source. Indeed, SR and area detectors are the major progress of the last few years in the technology applied to the data collection from macromolecular crystals.

Keywords

Synchrotron Radiation Storage Ring Area Detector Synchrotron Radiation Source Synchrotron Radiation Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    H.D. BARTUNIK, R. FOURME and M.H.J. KOCH, Macromolecular Crystallography Using Synchrotron Radiation in : Uses of Synchrotron Radiation in Biology H.B. STUHRMANN, ed., Academic Press, London (1982)Google Scholar
  2. 1b.
    J.R HELLIWELL, Synchrotron x-radiation protein crystallography, Rep. Prog. Phys 47 : 1403 (1984)CrossRefGoogle Scholar
  3. 2.
    D.J. THOMPSON and M.W. POOLE eds., European Synchrotron Radiation Facility, Suppl. II, ESF, Strasbourg (1979)Google Scholar
  4. 3.
    G.K. GREEN, Report BNL 50522, BNL Laboratory, Upton, NY 11973, USA, (1976)Google Scholar
  5. 4.
    R. KAHN, R. FOURME, A. GADET, J. JANIN and D. ANDRE, Macromolecular crystallography with synchrotron radiation : Photographic data collection and polarization correction, J. Appl. Cryst. 15 : 330 (1982)CrossRefGoogle Scholar
  6. 5.
    G. BROWN, K. HALBACH, J. HARRIS and H. WINICK, Wiggler and undulator magnets - a review, Nucl. Instrum. Meth. 208 : 65 (1983)CrossRefGoogle Scholar
  7. 6.
    G.N. GREAVES, R. BENNET, P.J. DUKE, R. HOLT and V.P. SULLER, X-Ray optics and spectral brightness of the superconducting SRS wiggler Nucl. Instrum. Meth 208 : 139 (1983)CrossRefGoogle Scholar
  8. 7.
    B.W. BATTERMAN and L. BERMAN, Saggital focusing of synchrotron radiation, Nucl. Instrum. Meth. 208 : 327 (1983)CrossRefGoogle Scholar
  9. 8.
    U.W. ARNDT and A.J. WONACOTT eds., The rotation method in crystallography, North Holland, Amsterdam (1977)Google Scholar
  10. 9.
    G.E. SCHULTZ and G. ROSENBAUM, The MWPC as an area detector for protein crystallography in comparison with photographic films : guidelines for future development of area detectors, Nucl. Instrum. Meth. 152 : 205 (1978)CrossRefGoogle Scholar
  11. 10.
    R. KAHN, R. FOURME, R. B0SSHARD, B. CAUDR0N, J.C. SANTIARD and G. CHARPAK, an X-ray diffractometer for macromolecular crystallography based on a spherical drift chamber. Hardware, software and multiwavelength data acquisition with synchrotron radiation, NucL, Instrum. Meth 201 : 203 (1982)CrossRefGoogle Scholar
  12. 11.
    R.P. PHIZACKERLEY, C.W. CORK, R.C. HAMLIN, C.P. NIELSEN, W. VERNON, N.H. XUONG and V. PEREZ MENDEZ, Progress report on the development of an area detector data acquisition system for X-ray crystallography and other X-ray diffraction experiments, Nucl. Instrum. Meth. 172:393 (1980)CrossRefGoogle Scholar
  13. 12.
    K.S. WILSON, E.A. STURA, D.L. WILD, R.J. TODD, D.I. STUART, Y.S. BABU, J.A. JENKINS, T.S. STANDING, L.N. JOHNSON, R. FOURME, R. KHAN, A. GADET, K.S. BARTELS and H.D. BARTUNIK, Macromolecular crystallography with synchrotron radiation II, results, J. Appl. Crystallogr. 16 : 28 (1983)CrossRefGoogle Scholar
  14. 13.
    -O. KENNARD, W. CRUSE, J. NACHMAN, T. PRANGE, Z. SHAKKED, D. RABINOVITCH, Ordered water structure in an A-DNA octamer at 1.7 Å resolution, Nucl. Aci. Res. (in press)Google Scholar
  15. 14.
    G. FERMI, M.F. PERUTZ, B. SHAANAN and R. FOURME, The crystal structure of human deoxyhaemoglobin, J. Mol. Biol. 175 : 159 (1984)PubMedCrossRefGoogle Scholar
  16. 15.
    E. WESTBROOK and P.B. SIGLER (private communication)Google Scholar
  17. 16.
    R. USHA, J.E. JOHNSON, D. MORAS, J.C. THIERRY, R. FOURME and R. KAHN J. Appl. Crystallogr. 17 : 147 (1984)CrossRefGoogle Scholar
  18. 17.
    K. MOFFAT, D. BILDERBACK, W. SCHILDKAMP and K. VOLZ, Laue diffraction from biological molecules, Nucl. Instrum. Meth. (in press)Google Scholar
  19. M.G. ROSSMANN and J.R. HELLIWELL (private communication)Google Scholar
  20. J. HADJU, K.R. ACHARYA, D.I. STUART, T.J. MCLAUGHLIN, D. BARFORD, H. KLEIN, L.N. JOHNSON, Time-resolved studies on catalysis in the crystal with glycogen phosphorylase b, (submitted)Google Scholar
  21. 20.
    J. WALTER, W. STEIGEMANN, T.P. SINGH, H.D. BARTUNIK, W. BODE and R. HUBER, On the disordered activation domain in trypsinogen : chemical labelling and low temperature crystallography, Acta Crystallogr. B38 : 1462 (1982)Google Scholar
  22. 21.
    H.D. BARTUNIK, Low temperature and time-resolved protein crystallography using synchrotron radiation, Nucl. Instrum. Meth. 208 : 523 (1983)CrossRefGoogle Scholar
  23. 22.
    H.D. BARTUNIK and C. BOULIN, DACOM : hardware data handling for stationary and time-resolved data acquisition with area detectors in Structural 3iological Applications of X-ray Absorption, Scattering and Diffraction, H.D. BARTUNIK and B. CHANCE eds., Academic Press, New York (1985)Google Scholar
  24. 23.
    K. MOFFAT, D. SZEBENYI and D. BILDERBACK, Science 223 : 1423 (1984)PubMedCrossRefGoogle Scholar
  25. 24.
    HEDMAN, K.O. HODGSON, J.R. HELLIWELL, R. LIDDINGTON and M.Z. PAPIZ, Proc. Nat. Acad. Sci. USA (1985) (in press)Google Scholar
  26. 25.
    P. MACHIN ed., Information Quarterly for Protein Crystallography, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England, 15 (1985)Google Scholar
  27. 26.
    J. DOUCET and J.P. BENOIT, Rapport d1 activité LURE 1984–1985, LURE, Bat. 209D, 91405 ORSAY Cedex, France (1985)Google Scholar
  28. 27.
    W.A. HENDRICKSON and M.M. TEETER, Structure of the hydrophobic protein crambin determined directly form the anomalous scattering of sulphur, Nature 290 : 107 (1981)CrossRefGoogle Scholar
  29. 28.
    J. KARLE, Unique or essentially unique results from one-wavelength anomalous dispersion data, Acta crystallogr. A4l : 387 (1985)Google Scholar
  30. 29.
    R.W. JAMES, The Optical Principles of the Diffraction of X-rays, Cornell University Press (1948)Google Scholar
  31. 30.
    J. KARLE, Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology, Intl. J. Quant. Chem. 7 : 357 (1980)Google Scholar
  32. 31.
    R. KAHN, R. FOURME, R. BOSSHARD, M. CHIADMI, J.L. RISLER, O. DIDEBERG and J.P. WERY, Crystal structure of Opsanus tau parvalbumin by multiwavelength anomalous diffraction, FEBS Lett. 179(1) : 133 (1985)PubMedCrossRefGoogle Scholar
  33. 32.
    J.C. PHILLIPS and K.O. HODGSON, The use of anomalous scattering effects to phase diffraction patterns from macromolecules, Acta Crystallogr. A36 : 856 (1980)Google Scholar
  34. 33.
    R. FOURME, R. CHIADMI and R. KAHN, Rapport d’activité LURE 1984–85, LURE, Bat. 209D, 91405 ORSAY Cedex, France (1985)Google Scholar
  35. 34.
    W.A. HENDRICKSON, J.L. SMITH, R.P. PHIZACKERLEY, E.A. MERRITT and W.E. LOVE, Anomalous dispersion crystallography of lamprey hemoglobin, SSRL Progress Report, SSRL, Stanford University, USA (1984)Google Scholar
  36. 35.
    T.L. BLUNDELL, I.D. GLOVER, J.E. PITTS, G.E. TAYLOR, I.J. TICKLE, W.G. TURNELL, S.P. WOOD, K. BARTELS and H.D. BARTUNIK, The determination of the position of the zinc ion in a small protein and the calculation of protein phases exploiting anomalous dispersion by using multiwavelength measurements with synchrotron radiation (in press)Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • R. Fourme
    • 1
  • R. Kahn
    • 1
  1. 1.LURE (CNRS, Université Paris-Sud)Orsay CedexFrance

Personalised recommendations