Advertisement

The Structure of Poliovirus at 2.9 Å Resolution: Crystallographic Methods and Biological Implications

  • J. M. Hogle
  • M. Chow
  • D. J. Filman
Part of the NATO ASI Series book series (NSSA, volume 126)

Abstract

Poliovirus is a member of the Picornavirus family, which also includes a number of biologically significant pathogens such as hepatitis A virus, foot and mouth disease virus, the coxsackie viruses, and the rhinoviruses. The poliovirus capsid is approximately 300 A in diameter, with a mass of 8.4 million daltons. It is composed of sixty copies each of the four capsid proteins VP1 , VP2, VP3, and VP4 (approximately 33, 30, 26, and 7.5 kilodaltons, respectively), arranged to form a T=l icosahedral shell. The capsid encloses one molecule of single stranded message sense RNA of approximately 7500 nucleotides (2.5 million daltons)1. In nature, there are three known stable serotypes of poliovirus, and within each serotype there is a large number of strains. We have solved the structure of the Mahoney strain of type 1 poliovirus at 2.9 Å resolution2. Recently, Rossmann et al.3have reported the structure of a closely related virus, rhinovirus 14.

Keywords

Capsid Protein Plant Virus Antigenic Site Carboxy Terminus Major Capsid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.R. Rueckert, On the structure and morphogenesis of picornaviruses, in: “Comprehensive Virology”, vol. 6, H. Fraenkel-Conrat and R. R. Wagner, eds., Plenum (1976).Google Scholar
  2. 2.
    J.M. Hogle, M. Chow, and D.J. Filman, Three-dimensional structure of poliovirus at 2.9 Å resolution. Science, 229:1358 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    M.G. Rossmann, E. Arnold, J.W. Erickson, E.A. Fankenberger, J.P. Griffith, H.-J. Hecht, J.E. Johnson, G. Kamer, M. Luo, A.G. Mosser, R.R. Rueckert, B. Sherry, and G. Vriend, Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, 317:145 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    S.C. Harrison, A.J. Olson, C.E. Schutt, F.K. Winkler, and G. Bricogne, Tomato bushy stunt virus at 2.9 A resolution. Nature, 276:368 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    C. Abad-Zapatero, S.S. Abdel-Mequid, J.E. Johnson, A.G.W. Leslie, I. Rayment, M.G. Rossmann, D. Suck, and T. Tsukihara, Structure of southern bean mosaic virus at 2.8 A resolution. Nature, 286:33 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Liljas, T. Unge, T.A. Jones, K. Fridborg, S. Lovgren, U. Skoglund, and B. Strandberg, Structure of satellite tobacco necrosis virus at 3.0 Å resolution. J. Mol. Biol., 159:93 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    J.M. Hogle, A. Maeda, and S.C. Harrison, Structure and assembly of turnip crinkle virus, I: x-ray crystallographic structure analysis at 3.2 Å resolution. J. Mol. Biol. 191:625–638 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    W.P.J. Gaykema, W.G.J. Hol, J.M. Vereijken, N.M. Soeter, H.J. Bak, and J.J. Beintema, 3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin. Nature, 309:23 (1984).CrossRefGoogle Scholar
  9. 9.
    F.K. Winkler, C.E. Schutt, and S.C. Harrison, The oscillation method for crystals with very large unit cells, Acta Cryst., A35:9Ol (1979).Google Scholar
  10. 10.
    G. Bricogne, Methods and programs for direct-space exploitation of geometric redundancies. Acta Cryst., A32:832 (1976).Google Scholar
  11. 11.
    M.A. Pallansch, O.M. Kew, B.L. Semler, D.R. Omilianowski, C.W. Anderson, E. Wimmer, and R. R. Rueckert, Protein processing map of poliovirus. J. Virol., 49:873 (1984).PubMedGoogle Scholar
  12. 12.
    E.A. Emini, B.A. Jameson, A.J. Lewis, G.R. Larsen, and E. Wimmer, Poliovirus neutralization epitopes: analysis and localization with neutralizing monoclonal antibodies. J. Virol., 43:997 (1982).PubMedGoogle Scholar
  13. 13.
    R. Crainic, P. Couillin, B. Blondel, N. Cabau, A. Boue, and F. Horodniceanu, Natural variation of poliovirus neutralization epitopes. Infect. Immun., 41:1217 (1983).PubMedGoogle Scholar
  14. 14.
    P.D. Minor, G.C. Schild, J. Bootman, D.M.A. Evans, M. Ferguson, P. Reeve, M. Spitz, G. Stanway, A.J. Cann, R. Hauptmann, L.D. Clarke, R.C. Mountford, and J.W. Almond, Location and primary structure of a major antigenic site for poliovirus neutralization. Nature, 301:674 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    P.D. Minor, D.M.A. Evans, M. Ferguson, G.C. Schild, G. Westorp, and J.W. Almond, Principal and subsidiary antigenic site of VP1 involved in the neutralization of poliovirus type 3. J. Gen. Virol., 65:1159 (1985).CrossRefGoogle Scholar
  16. 16.
    M. Ferguson, D.M.A. Evans, D.I. Magrath, P.D. Minor, J.W. Almond, and G.C. Schild, Induction by synthetic peptides of broadly reactive, type-specific neutralizing antibody to poliovirus type 3. Virology, 143:505 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    D.C. Diamond, B.A. Jameson, J. Bonin, M. Kohara, S. Abe, H. Itoh, T. Komatsu, M. Arita, S. Kuge, A. Nomoto, A. D. M. E. Osterhaus, R. Crainic, and E. Wimmer, Antigenic variation and resistance to neutralization in poliovirus type 1. Science, 229:1090 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    P. D. Minor, personal communication.Google Scholar
  19. 19.
    M. Chow, R. Yabrov, J. Bittle, J. Hogle, and D. Baltimore, Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies, Proc. Natl. Acad. Sci. USA, 82:910 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    E. A. Emini, B.A. Jameson, and E. Wimmer, Priming for and induction of anti-poliovirus neutralizing antibodies by synthetic peptides. Nature, 304:699 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    E. A. Emini, B.A. Jameson, and E. Wimmer, Identification of a new neutralization antigenic site on poliovirus coat protein VP2. J Virol., 52:719 (1984a).PubMedGoogle Scholar
  22. 22.
    E.A. Emini, B.A. Jameson, and E. Wimmer, Identification of multiple neutralization antigenic sites on poliovirus type 1 and the priming of the immune response with synthetic peptides, in: “Modern Approaches to Vaccines”, R. M. Chanock, and R. A. Lerner, eds., Cold Spring Harbor Laboratory (1984b).Google Scholar
  23. 23.
    B.A. Jameson, J. Bonin, M.G. Murray, E. Wimmer, and O. Kew, Peptide-induced neutralizing antibodies to poliovirus, in: “Vaccines 85”, R.A. Lerner, R.M. Chanock, and F. Brown, eds., Cold Spring Harbor Laboratory (1985).Google Scholar
  24. 24.
    P.D. Minor, M. Ferguson, D.M.A. Evans, and J.P. Icenogle, Antigenic structure of polioviruses of serotypes 1, 2, and 3. J. Gen. Virol. 67:1283–1291 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    D.C. Wiley, I.A. Wilson, and J.J. Skehel, Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation, Nature, 289:373 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    P.M. Colman, J.N. Varghese, and W.G. Laver, Structure of the catalytic and antigenic sites in influenza virus neuraminidase, Nature, 305:41 (1983).CrossRefGoogle Scholar
  27. 27.
    M.L. Connolly, Depth-buffer algorithms for molecular modelling. J. Mol. Graphics, 3:19 (1985).CrossRefGoogle Scholar
  28. 28.
    M.L. Connolly, Analytical molecular surface calculation. J. Appl. Crystallogr., 16:548 (1983).CrossRefGoogle Scholar
  29. 29.
    M.G. Rossmann, C. Abad-Zapatero, M.R.N. Murthy, L. Liljas, T.A. Jones, and B. Strandberg, Structural comparisons of some small spherical plant viruses. J. Mol. Biol., 165:711 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • J. M. Hogle
    • 1
  • M. Chow
    • 1
  • D. J. Filman
    • 1
  1. 1.Department of Molecular Biology ResearchInstitute of Scripps ClinicLa JollaUSA

Personalised recommendations