The Structure of a Human Common Cold Virus (Rhinovirus 14) and its Functional Relations to Other Picornaviruses

  • Michael G. Rossmann
  • Edward Arnold
  • John W. Erickson
  • Elizabeth A. Frankenberger
  • James P. Griffith
  • Hans-Jürgen Hecht
  • John E. Johnson
  • Greg Kamer
  • Ming Luo
  • Anne G. Mosser
  • Roland R. Rueckert
  • Barbara Sherry
  • Gerrit Vriend
Part of the NATO ASI Series book series (NSSA, volume 126)


Picornaviruses are associated with serious diseases in humans and other animals, and they comprise one of the largest families of viral pathogens. For example, the common cold, poliomyelitis, foot-and-mouth disease and hepatitis can be caused by these viruses. They are among the smallest RNA-containing animal viruses (1–3). Their molecular weight is a round 8.5 x 106 and they contain about 30% by weight RNA. Their external diameter is roughly 300 Å and they form icosahedral shells. Picornaviridae have been subdivided into four genera on the basis of their buoyant density, pH stability and sedimentation coefficients: enterovirus (e . g . polio, hepatitis A and coxsackie viruses), cardiovirus (e .g . encephalomyocarditis and Mengo viruses), aphthovirus (e.g. foot-and-mouth disease virus) and rhinovirus . They differ also in the number of known serotypes. For instance there are three known serotypes for polioviruses, seven for foot-and- mouth disease viruses (FMDV) and at least 89 for human rhinoviruses (HRV). Accordingly, it has been possible to produce effective vaccines for poliomyelitis and, with greater difficulty , for foot-and-mouth disease, but not for the common cold.


Human Rhinovirus Icosahedral Symmetry Tomato Bushy Stunt Virus Poliovirus Type Canyon Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Putnak and B. A. Phillips, Picornaviral structure and assembly, Microbiol. Rev. 45:287–315 (l98l).PubMedGoogle Scholar
  2. 2.
    D. V. Sangar, The replication of picornaviruses, J._ Gen. Virol. 45:1–13 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    R. R. Rueckert, On the structure and morphogenesis of picornaviruses, in: “Comprehensive Virology,” H. Fraenkel-Conrat and R. R. Wagner, eds., Vol. 6, pp. 131–213, Plenum, New York (1976).Google Scholar
  4. 4.
    R. R. Rueckert, A. K. Dunker, and C. M. Stoltzfus, The structure of mouse-Elberfeld virus: a model, Proc. Natl. Acad. Sci. U.S. 62:912–919 (l969).CrossRefGoogle Scholar
  5. 5.
    R. R. Rueckert and E. Wimmer, Systematic nomenclature of picornavirus proteins, J. Virol. 50:957–959 (1984)-PubMedGoogle Scholar
  6. 6.
    S. McGregor, L. Hall, and R. R. Rueckert, Evidence for the existence of protomers in the assembly of encephalomyocarditis virus, J._ Virol.15:1107–1120 (1975).PubMedGoogle Scholar
  7. 7.
    M. F. Jacobson, J. Asso, and D. Baltimore, Further evidence on the formation of poliovirus proteins, J. Mol. Biol. 49:657–669 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    S. McGregor and R. R. Rueckert, Picornaviral capsid assembly: similarity of rhinovirus and enterovirus precursor subunits, J. Virol. 21:548–553 (1977).PubMedGoogle Scholar
  9. 9.
    C. B. Fernandez-Tomas, N. Guttman, and D. Baltimore, Morphogenesis of poliovirus III. Formation of provirion in cell-free extracts, J. Virol. 12:1181–1183 (1973).PubMedGoogle Scholar
  10. 10.
    M. F. Jacobson and D. Baltimore, Morphogenesis of poliovirus. I. Association of the viral RNA with coat protein, J. Mol. Biol. 33:369– 378 (1968).PubMedCrossRefGoogle Scholar
  11. 11.
    C. B. Fernandez-Tomas and D. Baltimore, Morphogenesis of poliovirus. II. Demonstration of a new intermediate, the provirion, J. Virol.12:1122–1130 (1973).PubMedGoogle Scholar
  12. 12.
    Y. F. Lee, A. Nomoto, B. M. Detjen, and E. Wimmer, A protein covalently linked to poliovirus genome RNA, Proc. Natl. Acad. Sci. U.S. 74:59–63 (1977).CrossRefGoogle Scholar
  13. 13.
    D. V. Sangar, D. J. Rowlands, T. J. R. Harris, F. Brown, Protein covalently linked to foot-and-mouth disease virus RNA, Nature (London), 268:648–650 (1977).CrossRefGoogle Scholar
  14. 14.
    V. Ambros and D. Baltimore, Protein is linked to the 5’ end of poliovirus RNA by a phosphodiester linkage to tyrosine, J. Biol. Chem.253:5263–5266 (1978).PubMedGoogle Scholar
  15. 15.
    F. Golini, B. L. Semler, A. J. Dorner, and E. Wimmer, Protein-linked RNA of poliovirus is competent to form an initiation complex of translation in vitro, Nature (London), 287:600–603 (1980).CrossRefGoogle Scholar
  16. 16.
    A. B. Vartapetian, E. V. Koonin, V. I. Agol, and A. A. Bogdanov, Encephalomyocarditis virus RNA synthesis in vitro is protein-primed, EMBO J.3 ,2593–2598 (1984).PubMedGoogle Scholar
  17. 17.
    E. Wimmer, Genome-linked proteins of viruses, Cell, 28:199–201 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    M. A. Pallansch, 0. M. Kew, B. L. Semler, D. R. Omilianowski, C. W. Anderson, E. Wimmer, and R. R. Rueckert, Protein processing map of poliovirus, J. Virol. 49:873–880 (1984).PubMedGoogle Scholar
  19. 19.
    R. Hanecak, B. L. Semler, C. W. Anderson, and E. Wimmer, Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs, Proc. Natl. Acad. Sci. U.S. 79:3973–3977 (1982).CrossRefGoogle Scholar
  20. 20.
    P. Carthew and S. J. Martin, The iodination of bovine enterovirus particles, J. Gen. Virol. 24:525–534 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    K. Lonberg-Holm and B. E. Butterworth, Investigation of the structure of polio-and human rhinovirions through the use of selective chemical reactivity, Virology, 71:207–216 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    T. W. Beneke, K. 0. Habermehl, W. Diefenthal, and M. Buchholz, Iodination of poliovirus capsid proteins, J. Gen. Virol. 34:387–390 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    G. A. Lund, B. R. Ziola, A. Salmi, and D. G. Scraba, Structure of the Mengo virion. V. Distribution of the capsid polypeptides with respect to the surface of the virus particle, Virology, 78:35–44 (1977)PubMedCrossRefGoogle Scholar
  24. 24.
    K. Wetz and K. 0. Habermehl, Topographical studies on poliovirus capsid proteins by chemical modification and cross-linking with bifunctional reagents, J. Gen. Virol. 44:525–534 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    J. S. Hordern, J. D. Leonard, and D. G. Scraba, Structure of the Mengo virion. VI. Spatial relationships of the capsid polypeptides as determined by chemical cross-linking analyses, Virology, 97:131–140 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    K. Wetz and K. 0. Habermehl, Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of poliovirus, J. Gen. Virol.59:397–401 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Toyoda, M. Kohara, Y. Kataoka, T. Suganuma, T. Omata, N. Imura, and A. Nomoto, Complete nucleotide sequences of all three poliovirus serotype genomes. Implication for genetic relationship, gene function and antigenic determinants, J. Mol. Biol. 174:561–585 (l984)PubMedCrossRefGoogle Scholar
  28. 28.
    N. Kitamura, B. L. Semler, P. G. Rothberg, G. R. Larsen, C. J. Adler, A. J. Dorner, E. A. Emini, R. Hanecak, J. J. Lee, S. van der Werf, C. W. Anderson, and E. Wimmer, Primary structure, gene organization and polypeptide expression of poliovirus RNA, Nature (London), 291:547–553 (1981).CrossRefGoogle Scholar
  29. 29.
    G. Stanway, A. J. Cann, R. Hauptmann, P. Hughes, L. D. Clarke, R. C. Mountford, P. D. Minor, G. C. Schild, and J. W. Almond, The nucleotide sequence of poliovirus type 3 leon 12 a1b: comparison with poliovirus type 1, Nucl. Acids Res. 11:5629–5643 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    V. R. Racaniello and D. Baltimore, Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome, Proc. Natl. Acad. Sci. U.S. 78:4887–4891 (l98l).CrossRefGoogle Scholar
  31. 31.
    A. J. Makoff, C. A. Paynter, D. J. Rowlands, and J. C. Boothroyd, Comparison of the amino acid sequence of the major immunogen from three serotypes of foot and mouth disease virus, Nucl. Acids Res. 10:8285–8295 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    A. R. Carroll, D. J. Rowlands, and B. E. Clarke, The complete nucleo-tide sequence of the RNA coding for the primary translation product of foot and mouth disease virus, Nucl. Acids Res. 12:2472–2472 (1984).CrossRefGoogle Scholar
  33. 33.
    S. Forss, K. Strebel, E. Beck, and H. Schaller, Nucleotide sequence and genome organization of foot-and-mouth disease virus, Nucl. Acids Res. 12:6587–6601 (1984).PubMedCrossRefGoogle Scholar
  34. 34.
    J. C. Boothroyd, P. E. Highfield, G. A. M. Cross, D. J. Rowlands, P. A. Lowe, F. Brown, and T. J. R. Harris, Molecular cloning of foot and mouth disease virus genome and nucleotide sequences in the structural protein genes, Nature (London), 290:800–802 (l98l).CrossRefGoogle Scholar
  35. 35.
    G. Stanway, P. J. Hughes, R. C. Mountford, P. D. Minor, and J. W. Almond, The complete nucleotide sequence of a common cold virus: human rhinovirus 14, Nucl. Acids Res. 12:7859–7875 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    P. L. Callahan, S. Mizutani, and R. J. Colonno, Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14, Proc. Natl. Acad. Sci. U.S. 82:732–736 (1985).CrossRefGoogle Scholar
  37. 37.
    T. Skern, W. Sommergruber, D. Blaas, P. Gruendler, F. Fraundorfer, C. Pieler, I. Fogy, and E. Kuechler, Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region, Nucl. Acids Res. 13:2111–2126 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    A. C. Palmenberg, E. M. Kirby, M. R. Janda, N. L. Drake, G. M. Duke, K. F. Potratz, and M. S. Collett, The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region, Nucl. Acids Res. 12:2969–2985 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    R. Najarian, D. Caput, W. Gee, S. J. Potter, A. Renard, J. Merryweather, G. Van Nest, and D. Dina, Primary structure and gene organization of human hepatitis A virus, Proc. Natl. Acad. Sci. U.S.82:2627–2631 (1985).CrossRefGoogle Scholar
  40. 40.
    D. L. Linemeyer, J. G. Menke, A. Martin-Gallardo, J. V. Hughes, A. Young, and S. W. Mitra, Molecular cloning and partial sequencing of hepatitis A viral cDNA, J. Virol. 54:247–255 (1985).PubMedGoogle Scholar
  41. 41.
    P. Argos, G. Kamer, M. J. H. Nicklin, and E. Wimmer, Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families, Nucl. Acids Res. 12:7251–7267 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    H. Franssen, J. Leunissen, R. Goldbach, G. Lomonossoff, and D. Zimmern, Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses, EMBO J. 3:855–86l (1984).PubMedGoogle Scholar
  43. 43.
    G. Kamer and P. Argos, Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses, Nucl. Acids Res.12:7269–7282 (1984).PubMedCrossRefGoogle Scholar
  44. 44.
    J. Haseloff, P. Goelet, D. Zimmern, P. Ahlquist, R. Dasgupta, and P. Kaesberg, Striking similarities in amino acid sequence among nonstructural proteins encoded by RNA viruses that have dissimilar genomic organization, Proc. Natl. Acad. Sci. U.S. 8l:4358–4362 (1984).CrossRefGoogle Scholar
  45. 45.
    P. Ahlquist, E. G. Strauss, C. M. Rice, J. H. Strauss, J. Haseloff, and D. Zimmern, Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses, J._ Virol.53:536–542 (1985).PubMedGoogle Scholar
  46. 46.
    M. A. Rezaian, R. H. V. Williams, K. H. J. Gordon, A. R. Gould, and R. H. Symons, Nucleotide sequence of cucumber-mosaic-virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses, Eur. J. Biochem. 143:277–284 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    N. J. Dimmock, Mechanisms of neutralization of animal viruses, J. Gen. Virol. 65:1015–1022 (1984).PubMedCrossRefGoogle Scholar
  48. 48.
    J. Icenogle, H. Shiwen, G. Duke, S. Gilbert, R. Rueckert, and J. Anderegg, Neutralization of poliovirus by a monoclonal antibody: kinetics and stoichiometry, Virology, 127:412–425 (1983)PubMedCrossRefGoogle Scholar
  49. 49.
    B. Mandel, Neutralization of poliovirus: a hypothesis to explain the mechanism and the one-hit character of the neutralization reaction, Virology, 69:500–510 (1976).PubMedCrossRefGoogle Scholar
  50. 50.
    E. A. Emini, B. A. Jameson, and E. Wimmer, Priming for an induction of anti-poliovirus neutralizing antibodies by synthetic peptides, Nature (London), 304:699–703 (1983).CrossRefGoogle Scholar
  51. 51.
    M. Schrom, J. A. Laffin, B. Evans, J. J. McSharry, and L. A. Caliguiri, Isolation of poliovirus variants resistant to and dependent on arildone, Virology, 122:492–497 (1982).PubMedCrossRefGoogle Scholar
  52. 52.
    E. A. Emini, S. Kao, A. J. Lewis, R. Crainic, and E. Wimmer, Functional basis of poliovirus neutralization determined with monospecific neutralizing antibodies, J. Virol. 46:466–474 (1983)PubMedGoogle Scholar
  53. 53.
    E. A. Emini, P. Ostapchuk, and E. Wimmer, Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization, J. Virol. 48:547–550 (1983).PubMedGoogle Scholar
  54. 54.
    B. Sherry and R. Rueckert, Evidence for at least two dominant neutralization antigens on human rhinovirus 14, J. Virol. 53:137–143 (1985).PubMedGoogle Scholar
  55. 55.
    B. Sherry, A. G. Mosser, R. J. Colonno, and R. R. Rueckert, Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14 ,J. Virol., manuscript in preparation (1985)Google Scholar
  56. 56.
    G. Abraham and R. J. Colonno, Many rhinovirus serotypes share the same cellular receptor, J. Virol. 51:340–345 (l984)PubMedGoogle Scholar
  57. 57.
    R. J. Colonno, personal communication.Google Scholar
  58. 58.
    P. D. Minor, P. A. Pipkin, D. Hockley, G. C. Schild, and J. W. Almond, Monoclonal antibodies which block cellular receptors of poliovirus, Virus Res. 1:203–212 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    D. L. Krah and R. L. Crowell, Properties of the deoxycholate-solubilized HeLa cell plasma membrane receptor for binding group B coxsackieviruses, J. Virol. 53:867–870 (1985).PubMedGoogle Scholar
  60. 60.
    K. Lonberg-Holm, The effects of concanavalin A on the early events of infection by rhinovirus type 2 and poliovirus type 2, J. Gen. Virol.28:313–327 (1975).PubMedCrossRefGoogle Scholar
  61. 61.
    C. F. T. Mattern and H. G. duBuy, Purification and crystallization of coxsackie virus, Science, 123:1037–1038 (1956).PubMedCrossRefGoogle Scholar
  62. 62.
    F. L. Schaffer and C. E. Schwerdt, Crystallization of purified MEF-1 poliomyelitis virus particles, Proc. Natl. Acad. Sci. U.S. 41:1020–1023 (1955).CrossRefGoogle Scholar
  63. 63.
    B. D. Korant and J. T. Stasny, Crystallization of human rhinovirus 1A, Virology, 55:410–417 (1973).PubMedCrossRefGoogle Scholar
  64. 64.
    J. T. Finch and A. Klug, Structure of poliomyelitis virus, Nature (London), 183:1709–1714 (1959).CrossRefGoogle Scholar
  65. 65.
    S. C. Harrison, A. J. Olson, C. E. Schutt, F. K. Winkler, and G. Bricogne, Tomato bushy stunt virus at 2.9 A resolution, Nature (London), 276:368–373 (1978).CrossRefGoogle Scholar
  66. 66.
    C. Abad-Zapatero, S. S. Abdel-Meguid, J. E. Johnson, A. G. W. Leslie, I. Rayment, M. G. Rossmann, D. Suck, and T. Tsukihara, Structure of southern bean mosaic virus at 2.8 resolution, Nature Å(London), 286:33–39 (1980).CrossRefGoogle Scholar
  67. 67.
    L. Liljas, T. Unge, T. A. Jones, K. Fridborg, S. Lövgren, U. Skoglund, and B. Strandberg, Structure of satellite tobacco necrosis virus at 3.0 Å resolution, J. Mol. Biol. 159:93–108 (1982).PubMedCrossRefGoogle Scholar
  68. 68.
    J. M. Hogle, Preliminary studies of crystals of poliovirus type I, J. Mol. Biol. 160:663–668 (l982).PubMedCrossRefGoogle Scholar
  69. 69.
    J. W. Erickson, E. A. Frankenberger, M. G. Rossmann, G. S. Fout, K. C. Medappa, and R. R. Rueckert, Crystallization of a common cold virus, human rhinovirus 14: “isomorphism” with poliovirus crystals, Proc. Natl. Acad. Sci. U.S. 80:931–934 (1983).CrossRefGoogle Scholar
  70. 70.
    E. Arnold, J. W. Erickson, G. S. Fout, E. A. Frankenberger, H. J. Hecht, M. Luo, M. G. Rossmann, and R. R. Rueckert, Virion orientation in cubic crystals of the human common cold virus HRVI4, J. Mol. Biol.177:417–430 (1984).PubMedCrossRefGoogle Scholar
  71. 71.
    M. Luo, E. Arnold, J. W. Erickson, M. G. Rossmann, U. Boege, and D. G. Scraba, Picornaviruses of two different genera have similar structures, J. Mol. Biol. 180:703–714 (l984).PubMedCrossRefGoogle Scholar
  72. 72.
    “International Tables for Crystallography,” T. Hahn, ed., Vol. A, Reidel Publishing, Dordrecht (1983).Google Scholar
  73. 73.
    M. G. Rossmann and D. M. Blow, The detection of sub-units within the crystallographic asymmetric unit, Acta Crystallogr. 15:24–31 (1962).CrossRefGoogle Scholar
  74. 74.
    P. Argos and M. G. Rossmann, A method to determine heavy-atom positions for virus structures, Acta Crystallogr. B32:2975–2979 (1976).Google Scholar
  75. 75.
    P. Argos and M. G. Rossmann, Determining heavy-atom positions using non-crystallographic symmetry, Acta Crystallogr. A30672–677 (1974)•Google Scholar
  76. 76.
    M. G. Rossmann and E. Arnold, Comparison of vector search and feedback methods for finding heavy atom sites in isomorphous derivatives, manuscript in preparation (1985).Google Scholar
  77. 77.
    P. Argos, G. C. Ford, and M. G. Rossmann, An application of the molecular replacement technique in direct space to a known protein structure, Acta Crystallogr. A3l:499–5O6 (1975).Google Scholar
  78. 78.
    G. Bricogne, Methods and programs for the direct space exploitation of geometric redundancies, Acta Crystallogr. A32:832–847 (1976).Google Scholar
  79. 79.
    J. E. Johnson, Appendix II. Averaging of electron density maps, Acta Crystallogr. B34:576–577 (1978).Google Scholar
  80. SO. T. A. Jones, A graphics model building and refinement system for macromolecules, J. Appl. Crystallogr. 11:268–272 (1978).CrossRefGoogle Scholar
  81. 81.
    M. G. Rossmann and D. M. Blow, Determination of phases by the conditions of non-crvstallographic symmetry, Acta Crystallogr. 16:39–45 (1963).CrossRefGoogle Scholar
  82. 82.
    J. E. Johnson, T. Akimoto, D. Suck, I. Rayment, and M. G. Rossmann, The structure of southern bean mosaic virus at 22.5 Å resolution, Virology, 75:394–400 (1976).PubMedCrossRefGoogle Scholar
  83. 83.
    I. Rayment, T. S. Baker, D. L. D. Caspar, and W. T. Murakami, Polyoma virus capsid structure at 22.5 Å resolution, Nature (London), 295:110– 115 (1982).CrossRefGoogle Scholar
  84. 83a.
    T. Unge, L. Liljas, B. Strandberg, I. Vaara, K.K. Kannan, K. Friedeorg, C.E. Nordman and P.J. Lentz, Jr., Satellite tobacco necrosis virus structure at 4.0 Å resolution, Nature, 285:373–377 (1980).CrossRefGoogle Scholar
  85. 84.
    W. P. J. Gaykema, W. G. J. Hol, J. M. Vereijken, N. M. Soeter, H. J. Bak, and J. J. Beintema, 32 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin, Nature (London), 309:23–29 (1984).CrossRefGoogle Scholar
  86. 85.
    M. G. Rossmann, C. Abad-Zapatero, M. R. N. Murthy, L. Liljas, T. A. Jones, and B. Strandberg, Structural comparisons of some small spherical plant viruses, J._ Mol. Biol. l65:71l–73ó (1983).CrossRefGoogle Scholar
  87. 86.
    D. L. D. Caspar and A. Klug, Physical principles in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27:1–24 (1962).PubMedCrossRefGoogle Scholar
  88. 87.
    E. Pfaff, M. Mussgay, H. 0. Böhm, G. E. Schulz, and H. Schaller, Antibodies against a preselected peptide recognize and neutralize foot and mouth disease virus, EMBO J. 1:869–874 (1982).PubMedGoogle Scholar
  89. 88.
    H. Neurath, Evolution of proteolytic enzymes, Science, 224:350–357 (1984).PubMedCrossRefGoogle Scholar
  90. 89.
    T. A. Steitz and R. G. Shulman, Crystallographic and NMR studies of the serine proteases, Ann. Rev. Biophys. Bioeng. 11:419–444 (1982).CrossRefGoogle Scholar
  91. 90.
    E. Westhof, D. Altschuh, D. Moras, A. C. Bloomer, A. Mondragon, A. Klug, and M. H. V. Van Regenmortel, Correlation between segmental mobility and the location of antigenic determinants in proteins, Nature (London), 311:123–131 (1984).CrossRefGoogle Scholar
  92. 91.
    J. A. Tainer, E. D. Getzoff, H. Alexander, R. A. Houghten, A. J. Olson, R. A. Lerner, and W. A. Hendrickson, The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein, Nature (London), 312:127–134 (1984).CrossRefGoogle Scholar
  93. 92.
    R. H. Meloen, J. Briaire, R. J. Woortmeyer, and D. Van Zaane, The main antigenic determinant detected by neutralizing monoclonal antibodies on the intact foot-and-mouth disease virus particle is absent from isolated VP1, JN Gen. Virol. 64:1193–1198 (1983).CrossRefGoogle Scholar
  94. 93.
    9D. Cavanagh, D. V. Sangar, D. J. Rowlands, and F. Brown, Immunogenic and cell attachment sites of FMDV: further evidence for their location in a single capsid polypeptide, J. Gen. Virol. 35:149–158 (1977).PubMedCrossRefGoogle Scholar
  95. 94.
    T. F. Wild, J. N. Burroughs, and F. Brown, Surface structure of foot-and-mouth disease virus, J. Gen. Virol. 4:313–320 (l969).PubMedCrossRefGoogle Scholar
  96. 95.
    K. Strohmaier, R. Franze, and K. H. Adam, Location and characterization of the antigenic portion of the FMDV immunizing protein, J. Gen. Virol. 59:295–306 (1982).PubMedCrossRefGoogle Scholar
  97. 96.
    B. Baxt, D. 0. Morgan, B. H. Robertson, and C. A. Timpone, Epitopes on foot-and-mouth disease virus outer capsid protein VP1 involved in neutralization and cell attachment, J. Virol. 51:298–305 (l984)PubMedGoogle Scholar
  98. 97.
    P. Argos, T. Tsukihara, and M. G. Rossmann, A structural comparison of concanavalin A and tomato bushy stunt virus protein, J. Mol. Evol. 15:l69–179 (l98O).PubMedCrossRefGoogle Scholar
  99. 98.
    K. Lonberg-Holm and L. Philipson, Early interaction between animal viruses and cells, in: “Monographs in Virology,” J. L. Melnick, ed., Vol. 9 ,Karger, Basel (1974).Google Scholar
  100. 99.
    M. G. Rossmann, C. Abad-Zapatero, M. A. Hermodson, and J. W. Erickson, Subunit interactions in southern bean mosaic virus, J. Mol. Biol. 166:37–83 (1983).PubMedCrossRefGoogle Scholar
  101. 100.
    J. W. Erickson, A. M. Silva, M. R. N. Murthy, I. Fita, and M. G. Rossmann, The structure of a T = 1 icosahedral empty particle from southern bean mosaic virus, Science, 229:625–629 (1985)PubMedCrossRefGoogle Scholar
  102. 101.
    M. Chow, R. Yabrov, J. Bittle, J. Hogle, and D. Baltimore, Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies, Proc. Natl. Acad. Sci. U.S.82:91O-914 (1985).CrossRefGoogle Scholar
  103. 102.
    C. Wychowski, S. van der Werf, 0. Siffert, R. Crainic, P. Bruneau, and M. Girard, A poliovirus type 1 neutralization epitope is located within amino acid residues 93 to 104 of viral capsid polypeptide VP1, EMBO J.2:2019–2024 (1983).PubMedGoogle Scholar
  104. 103.
    D. M. A. Evans, P. D. Minor, G. S. Schild, and J. W. Almond, Critical role of an eight-amino acid sequence of VP1 in neutralization of poliovirus type 3, Nature (London), 304:459–462 (1983).CrossRefGoogle Scholar
  105. 104.
    P. D. Minor, G. C. Schild, J. Bootman, D. M. A. Evans, M. Ferguson, P. Reeve, M. Spitz, G. Stanway, A. J. Cann, R. Hauptmann, L. D. Clarke, R. C. Mountford, and J. W. Almond, Location and primary structure of a major antigenic site for poliovirus neutralization, Nature (London), 301:674–679 (1983).CrossRefGoogle Scholar
  106. 105.
    S. van der Werf, C. Wychowski, P. Bruneau, B. Blondel, R. Crainic, F. Horodniceanu, and M. Girard, Localization of a poliovirus type 1 neutralization epitope in viral capsid polypeptide VP1, Proc. Natl. Acad. Sci. U.S. 8O:5O8O-5O84 (1983).CrossRefGoogle Scholar
  107. 106.
    J. L. Bittle, R. A. Houghten, H. Alexander, T. M. Shinnick, J. G. Sutcliffe, R. A. Lerner, D. J. Rowlands, and F. Brown, Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence, Nature (London), 298:30–33 (1982).CrossRefGoogle Scholar
  108. 107.
    B. H. Robertson, D. 0. Morgan, and D. M. Moore, Location of neutralizing epitopes defined by monoclonal antibodies generated against the outer capsid polypeptide, VP1, of foot-and-mouth disease virus A12, Virus Res. 1:489–500 (1984).PubMedCrossRefGoogle Scholar
  109. 108.
    E. A. Emini, B. A. Jameson, and E. Wimmer, Identification of multiple neutralization antigenic sites on poliovirus type 1 and the priming of the immune response with synthetic peptides, in: “Modern Approaches to Vaccines,” R. M. Chanock and R. A. Lerner, eds., pp. 65–75, Cold Spring Harbor Laboratory, Cold Spring Harbor (l984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Michael G. Rossmann
    • 1
  • Edward Arnold
    • 1
  • John W. Erickson
    • 1
  • Elizabeth A. Frankenberger
    • 1
  • James P. Griffith
    • 1
  • Hans-Jürgen Hecht
    • 1
  • John E. Johnson
    • 1
  • Greg Kamer
    • 1
  • Ming Luo
    • 1
  • Anne G. Mosser
    • 2
  • Roland R. Rueckert
    • 2
  • Barbara Sherry
    • 2
  • Gerrit Vriend
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityW. LafayetteUSA
  2. 2.Biophysics LabUniversity of WisconsinMadisonUSA

Personalised recommendations