Advertisement

Selected and Directed Mutants of T4 Phage Lysozyme

  • Tom Alber
  • Terry M. Gray
  • Larry H. Weaver
  • Jeffrey A. Bell
  • Joan A. Wozniak
  • Sun Daopin
  • Keith Wilson
  • Sean P. Cook
  • Edward N. Baker
  • Brian W. Matthews
Part of the NATO ASI Series book series (NSSA, volume 126)

Abstract

The lysozyme from bacteriophage T4 is being used as a model system to determine the factors that influence the folding and stability of proteins. The three-dimensional structure of the protein is known and lysozymes with modified properties arising from single amino acid substitutions have been obtained by classical selection techniques as well as by site-directed mutagenesis. By rationalizing the stabilities of the mutant proteins in terms of their observed three-dimensional structures we are attempting to quantitate the contributions that single amino acids make to protein stability. Our studies to date lead to the following conclusions. (1) Thermal stability is global. (2) Different types of interaction contribute to stability. (3) Changes in stability need not be associated with large structural changes. (4) An increase in the stability of an α-helix may enhance the stability of the protein as a whole. (5) Hydrogen bonds contribute to stability. (6) Protein structures can readily adjust to changes in amino acid sequence.

Keywords

Amino Acid Substitution Hydrogen Bond Network Single Amino Acid Substitution Mutant Structure Open Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Streisinger, F. Mukai, W. J. Dreyer, B. Miller, and S. Horiuchi, Cold Spring Harbor Symp. Quant. Biol. 26 : 25 (1961).PubMedCrossRefGoogle Scholar
  2. 2.
    T. Alber and J. A. Wozniak, Proc. Natl. Acad. Sci. U.S.A. 82 : 747 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Alber, T. M. Gray, L. H. Weaver, J. Bell, J. A. Wozniak, K. Wilson, S. Daopin, and B. W. Matthews, P&S Biomedical Sciences Symposia. “Biological Organization: Macromolecular Interactions at High Resolution”. R.M. Burnett and H.J. Vogel, eds. In press (1985).Google Scholar
  4. 4.
    S. J. Remington, W. F. Anderson, J. Owen, L. F. Ten Eyck, C. T. Grainger, and B. W. Matthews, J. Mol. Biol. 118 : 81 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    L. H. Weaver and B. W. Matthews, J. Mol. Biol., submitted.Google Scholar
  6. 6.
    W. F. Anderson, M. G. Grütter, S. J. Remington, L. H. Weaver, and B. W. Matthews, J. Mol. Biol. 147 : 523 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    M. G. Grütter, R. B. Hawkes, and B.W. Matthews, Nature. 277 : 667 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    M. G. Grütter, L. H. Weaver, T. Gray, and B. W. Matthews, In “Bacteriophage T4” (C. K. Matthews, E. Kutter, G. Mosig, P. Berget, eds), pp. 356–360. American Society for Microbiology, Washington, D.C. (1983).Google Scholar
  9. 9.
    M. G. Grütter, L. H. Weaver, T. Alber, T. M. Gray, and B. W. Matthews, Manuscript in preparation.Google Scholar
  10. 10.
    T. Alber, M. G. Grütter, T. M. Gray, J. A. Wozniak, L. H. Weaver, B-L. Chen, E. N. Baker, and B. W. Matthews, UCLA Symposium on Molecular and Cellular Biology, Protein Structure, Folding and Design. Alan R.Liss, in press (1985).Google Scholar
  11. 11.
    R. Hawkes, R. Grütter, and J. Schellman, J. Mol. Biol. 175 : 195 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Alber, D. Muchmore, and B. W. Matthews, Manuscript in preparation.Google Scholar
  13. 13.
    D. C. Muchmore, C. B. Russell, and F. W. Dahlquist, Manuscript in preparation.Google Scholar
  14. 14.
    M. G. Rossmann, J. Appl. Crystallogr. 12: 225 (1979).CrossRefGoogle Scholar
  15. 15.
    M. F. Schmid, L. H. Weaver, M. A. Holmes, M. G. Grütter, D. H. Ohlendorf, R. A. Reynolds, S. J. Remington, and B. W. Matthews, Acta Crystallogr. A37 : 701 (1981).Google Scholar
  16. 16.
    M. G. Perutz and H. Raidt, Nature 255, 256 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Argos, M. G. Rossmann, U. M. Grau, H. Zuber, G. Frank, J. D. Tratschin, Biochemistry 18 : 5698 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Y. Chou and G. D. Fasman, Ann. Rev. Biochem. 47 : 251 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Levitt, Biochemistry 17: 4277 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Sueki, S. Lee, S. P. Powers, J. B. Denton, Y. Konishi, and H. A. Scheraga, Macromolecules 17 : 148 (1984).CrossRefGoogle Scholar
  21. 21.
    T. Alber and B. W. Matthews, In Protein Modification and Design, Alan R. Liss, Inc. In press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Tom Alber
    • 1
  • Terry M. Gray
    • 1
  • Larry H. Weaver
    • 1
  • Jeffrey A. Bell
    • 1
  • Joan A. Wozniak
    • 1
  • Sun Daopin
    • 1
  • Keith Wilson
    • 1
  • Sean P. Cook
    • 1
  • Edward N. Baker
    • 1
  • Brian W. Matthews
    • 1
  1. 1.Institute of Molecular Biology and Department of PhysicsUniversity of OregonEugeneUSA

Personalised recommendations