Crystallization of Protein and Nucleic Acids: A Survey of Methods and Importance of the Purity of the Macromolecules

  • Richard Giegé
Part of the NATO ASI Series book series (NSSA, volume 126)


Purification and crystallization of macromolecules are often challenging steps in structural projects using X-ray diffraction methods (1,2) and in some cases they can represent limiting factors. This explains the recent interest of molecular biologists and physicists to better understand crystal growth of macromolecules (3). In what follows we will discuss the role of purification in the crystallization of biopolymers and give particular emphasis to the concept of purity of preparations. Experimental set ups and properties of precipitants used to induce crystallization will be reviewed. Particular parameters affecting crystal growth of proteins (i.e. proteolysis) or of nucleic acids (i.e. nature of counter-ions, nuclease digestion, chemical fragility of RNAs) will be discussed. Examples taken from our laboratory in the field of aminoacyl-tRNA synthetases and transfer ribonucleic acids, and more generally in the field of nucleoproteins will illustrate the subject.


Crystal Growth Ammonium Sulfate Polyethylene Glycol Bacillus Stearothermophilus Protein Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.L. Blundell and J.L. Johnson, Protein Crystallography, Acadmic Press,New-York (1976).Google Scholar
  2. 2.
    A. McPherson, Preparation and Analysis of Protein Crystals, John Wiley and Sons, New-York (1982).Google Scholar
  3. 3.
    Abstracts First International Conference on Protein Crystal Growth, Stanford University, USA, August 14– (1985).Google Scholar
  4. 4.
    F. Jurnak, Induction of elongation factor Tu-GDP crystal polymorphism by polyethylene glycol contaminants, J. Mol. Biol. 185 : 215–217 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Uy and F. Wold, Posttranslational covalent modifications of proteins, Science (Washington) 198 : 890–896 (1977).CrossRefGoogle Scholar
  6. 6.
    F. Wold, In vivo chemical modification of proteins, Ann. Rev. Biochem. 50 : 783–814 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    J.H. Alix and D. Hayes, Why are macromolecules modified post-synthetically ? , Biol. Cell. 47 : 139–160 (1983).Google Scholar
  8. 8.
    F. Wold and K. Moldave (eds) Posttranslational Modifications, Methods in Enzymology 106 and 107 (1984).Google Scholar
  9. 9.
    D. Kernl B. Lorber, Y. Boulanger and R. Giegé, A peculiar property of aspartyl-tRNA synthetase from baker’s yeast : Chemical modification of the protein by the enzymatically synthesized ami noacyladenylate, Biochemistry 24 : 1321–1332 (1985).CrossRefGoogle Scholar
  10. 10.
    D. Kern, R. Giegé, S. Robbe-Saul, Y. Boulanger and J.P. Ebel, Complete purification and studies on the structural and kinetic properties of two forms of yeast valyl-tRNA synthetase, Biochimie (Paris) 57 : 1167–1176 (1975).CrossRefGoogle Scholar
  11. 11.
    J.R. Pringle, Methods for avoiding proteolytic artefacts in studies of enzymes and other proteins from yeast, in “Methods in Cell Biology”, Prescott, ed., Academic Press, New-York, 12 : 149–184 (1975).Google Scholar
  12. 12.
    T. Aoyagi and H. Umezawa, Structures and activities of protease inhibitors of microbial origin, in “Proteases and Biological Control”, E. Reich et al. eds, Cold Spring Harbor Laboratory, 429–454 (1975).Google Scholar
  13. 13.
    T. Achstetter and D. Wolf, Proteinases,proteolysis and biological control in the yeast Saccharomyces cerevisiae, Yeast 1 139–157 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    J.P. Waller, J.L. Risler, C. Monteilhet and C. Zelwer, Crystallization of trypsin-modified methionyl-tRNA synthetase from Escherichia coli, FEBS Lett. 16 : 186–188 (1971).PubMedCrossRefGoogle Scholar
  15. 15.
    D. Sneden, D.L. Miller, S.H. Kim and A. Rich, Preliminary X-ray analysis of the crystalline complex between polypeptide chain elongation factor, Tu and GDP, Nature (London) 241 : 530–531 (1973).CrossRefGoogle Scholar
  16. 16.
    W.H. Gast, R. Leberman, G.E. Schulz and A. Wittinghoffer, Crystals of partially trypsin-digested elongation factor Tu, J. Mol. Biol. 106 : 943–950 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Jurnak, A. McPherson, A.H.J. Wang and A. Rich, Biochemical and structural studies of the tetragonal crystalline modification of the E. coli EF-Tu, J. Biol. Chem. 255 : 6751–6757 (1980).PubMedGoogle Scholar
  18. 18.
    B. Lorber, D. Kern, A. Dietrich, T. Gangloff, J.P. Ebel and R. Giegé, Large scale purification and structural properties of yeast aspartyl-tRNA synthetase, Biochem. Biophys. Res. Commun. 117 : 259–267 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Michel, Crystallization of membrane proteins, Trends Biochem. Sci. 8 : 56–59 (1983).CrossRefGoogle Scholar
  20. 20.
    R.M. Garavito and J.A. Jenkins, Crystallization of integral membrane proteins, this issue.Google Scholar
  21. 21.
    T. Arakawa and S.N. Timasheff, Mechanism of poly(ethylene glycol) interactions with proteins, Biochemistry 24 : 6756–6762 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    A.C. Dock, B. Lorber, D. Moras, G. Pixa, J.C. Thierry and R. Giegé, Crystallization of transfer ribonucleic acids, Biochimie (Paris) 66 : 179–201 (1984).CrossRefGoogle Scholar
  23. 23.
    G. Dirheimer, Chemical nature, properties, location and physiological and pathological variation of modified nucleosides in tRNAs, Recent Results in Cancer Research 84 : 15–46 (1983).PubMedGoogle Scholar
  24. 24.
    S.K. Yang, D. Soll and D.M. Crothers, Properties of a dimer of tRNA(Tyrl) (Escherichia coli), Biochemistry 11 : 2311–2320 (1974).CrossRefGoogle Scholar
  25. 25.
    D.M. Brown, Chemical reactions of polynucleotides and nucleic acids, in “Basic Principles in Nucleic Acid Chemistry”, Ts’o ed, Academic Press, New-York, vol. 2 : 259–267 (1974).Google Scholar
  26. 26.
    P. Carbon, C. Ehresmann, B. Ehresmann and J.P. Ebel, The sequence of Escherichia coli ribosomal 16S RNA determined by new rapid gel methods, FEBS Lett. 94 : 152–156 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    D. Moras, A.C. Dock, P. Dumas, E. Westhof, P. Romby, J.P. Ebel and R. Giegé, Anticodon-anticodon interaction induces conformational changes in tRNA. Yeast tRNA(Asp) a model for tRNA-mRNA recognition, Proc. Natl. Acad. Sci. U.S.A. 83 : in press (1986). 2+Google Scholar
  28. 28.
    W. Wintermeyer and H.G. Zachau, Mg2+ Katalyzierte, spezifische Spaltung von tRNA, Biochim. Biophys. Acta 299 : 82–90 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Werner, B. Krebs, G. Keith and G. Dirheimer, Specific cleavages of pure tRNAs by lead, Biochim. Biophys. Acta 432 : 161– 175 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    R.S. Brown, J.C. Dewan and A. Klug, Crystallographic and biochemical investigation of the lead (II) catalyzed hydrolysis of yeast phenylalanine tRNA, Biochemistry 24 : 4785–4801 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    W.M. Holmes, R.E. Hurd, B.R. Reid, R.A. Rimerman and G.W. Hatfield, Separation of transfer ribonucleic acid by Sepharose chromatography using reverse salt gradients, Proc. Natl. Acad. Sci. U.S.A. 72 : 1068–1071 (1975).PubMedCrossRefGoogle Scholar
  32. 32.
    F. von der Haar, The ligand-induced solubility shift in salting-out chromatography. A new affinity technique demonstrated with phenylalanyl-and leucyl-tRNA synthetase, FEBS Lett.94 : 371–374 (1978).CrossRefGoogle Scholar
  33. 33.
    K. Gulewicz, D.A. Adamiak and M. Sprinzl, A new approach to the crystallization of proteins, FEBS Lett. 189 : 179–182 (1985).CrossRefGoogle Scholar
  34. 34.
    Z. Kam, H.B. Shore and G. Feher, On the crystallization of proteins, J. Mol. Biol. 123 : 539–555 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    R. Boistelle, Concepts de la cristallisation en solution, Actualit és n éphrologiques 6 : 159–202 (1985).Google Scholar
  36. 36.
    G. Feher and Z. Kam, Nucleation and growth of protein crystals : General principles and assays, Methods in Enzymology 114 : 77–112 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    T. Arakawa and S.N. Timasheff, Theory of protein solubility, Methods in Enzymology 114 : 49–77 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    C.H. Gilmer, Computer models of crystal growth, Science (Washington) 208 : 355–363 (1980).CrossRefGoogle Scholar
  39. 39.
    G.L. Gilliland and D.R. Davies, Protein crystallization : The growth of large-scale single crystals, Methods in Enzymology104 :370–381 (1984).PubMedCrossRefGoogle Scholar
  40. 40.
    A. McPherson, Crystallization of proteins from polyethylene glycol, J. Biol. Chem. 251, 6300–6303 (1976).PubMedGoogle Scholar
  41. 41.
    M.V. King, B.S. Magdoff, M.B. Adelman and D. Harker, Crystalline forms of bovine pancreatic ribonuclease : Techniques of preparation, unit cells, and space groups, Acta Cryst. 9 : 460–469 (1956).CrossRefGoogle Scholar
  42. 42.
    G.A. Petsko, Preparation of isomorphous heavy-atom derivatives, Methods in Enzymology 14 : 147–156 (1985).CrossRefGoogle Scholar
  43. 43.
    S.R. Hol brook and S.H. Kim, Crystallization and heavy-atom derivatives of polynucleotides, Methods in Enzymology 114 : 167–176 (1985).PubMedCrossRefGoogle Scholar
  44. 44.
    C.W. Carter Jr. and C.W. Carter, Protein crystallization using incomplete factorial experiments, J. Biol. Chem. 254 : 12219–12223 (1979).PubMedGoogle Scholar
  45. 45.
    A. Hampel, M. Labananskas, P.G. Conners, L. Kirkegard, U.L. RajBhandary, P.B. Sigler and R.M. Bock, Single crystals of transfer RNA from formyl-methionine and phenylalanine transfer RNA’s, Science (Washington) 162 : 1384–1386 (1968).CrossRefGoogle Scholar
  46. 46.
    D.R. Davies and D.M. Segal, Protein crystallization : Microtechniques involving vapor diffusion, Methods in Enzymology 22 : 266–269 (1971).CrossRefGoogle Scholar
  47. 47.
    A. Wlodawer and K.O. Hodgson, Crystallization and crystal data of monellin, Proc. Nat. Acad. Sci. U.S.A. 72 : 398–399 (1975).CrossRefGoogle Scholar
  48. 48.
    B.R. Reid, G.L.E. Koch, y. Boulanger, B. S. Hartley and D. Blow, Crystallization and preliminary X-ray diffraction studies on tyrosyl transfer RNA synthetase from Bacillus stearothermophilus, J. Mol. Biol. 80 : 199–201 (1973).PubMedCrossRefGoogle Scholar
  49. 49.
    M. Zeppezauer, Formation of large crystals, Methods in Enzymology 22 : 253–266 (1971).CrossRefGoogle Scholar
  50. 50.
    B.H. Weber and P.E. Goodkin, A modified microdiffusion procedure for the the growth of single protein crystals by concentration-gradient equilibrium dialysis, Arch. Biochem. Biophys. 141 : 489–498 (1970).PubMedCrossRefGoogle Scholar
  51. 51.
    F.R. Salemme, Protein crystallization by free interface diffusion, Methods in Enzymology 114 : 140–141 (1985).PubMedCrossRefGoogle Scholar
  52. 52.
    W. Littke and C. Jones, Protein single crystal growth under microgravity, Science (Washington) 225 : 203–204 (1984).CrossRefGoogle Scholar
  53. 53.
    R.E. Koeppe II, R.M. Stroud, U.A. Pena and D.U. Santi, A pulsed diffusion technique for the growth of protein crystals for X-ray diffraction, J. Mol. Biol. 98 : 155–160 (1975).PubMedCrossRefGoogle Scholar
  54. 54.
    A. McPherson, Crystallization of protein by variation of pH or temperature, Methods in Enzymology 104 : 125–127 (1985).CrossRefGoogle Scholar
  55. 55.
    W.B. Jacoby, Crystallization as a purification technique, Methods in Enzymology 22 : 248–252 (1971).CrossRefGoogle Scholar
  56. 56.
    G.N. Phi IIips, Jr., Crystallization in capillary tubes, Methods in Enzymology 104 : 128–131 (1985).CrossRefGoogle Scholar
  57. 57.
    A. Yonath, M.Z. Saper, I. Makowski, J. Mussif, J. Piefke, H.D. Bartunik, K.S. Bartels and H.G. Wittmann, Characterization of single crystals of the large ribosomal particles form Bacillus stearothermophilus, J. Mol. Biol. in press (1986).Google Scholar
  58. 58.
    C. Thaller, L.H. Weaver, G. Eichele, E. Wilson, R. Karlson and J.N. Jansonius, Seed enlargement and repeated seeding, Methods in Enzymology 104 : 132–135 (1985), and J. Mol. Biol. 147 : 465–469 (1981).CrossRefGoogle Scholar
  59. 59.
    S.H. Kim and A. Rich, Single crystals of transfer RNA : An X-ray diffraction study, Science (Washington) 162 : 1381–1384 (1968).CrossRefGoogle Scholar
  60. 60.
    K. Morikawa, M. Kawakami and S. Takemura, Crystallization and preliminary X-ray diffraction study of 5S rRNA from Thermus thermophilus HB8, FEBS Lett. 145 : 194–196 (1982).PubMedCrossRefGoogle Scholar
  61. 61.
    S.S. Abdel-Meguid, P.B. Moore and T.A. Steitz, Crystallization of a ribonuclease-resistant fragment of Escherichia coli 5S RNA and its complex with protein L25, J. Mol. Biol. 171 : 207–215 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    B. Lorber, R. Giegé, J.P. Ebel, C. Berthet, J.C. Thierry and D. Moras, Crystallization of a tRNA/aminoacyl-tRNA synthetase complex. Characterization and first crystallographic data, J. Biol. Chem. 258 : 8429–8435 (1983).PubMedGoogle Scholar
  63. 63.
    R. Giegel B. Lorber, J.P. Ebel, D. Moras, J.C. Thierry, B. Jacrot and G. Zaccaï, Formation of a catalytically active complex between tRNA(Asp) and aspartyl-tRNA synthetase in high concentration of ammonium sulfate, Biochimie (Paris) 64 : 357–362 (1982).CrossRefGoogle Scholar
  64. 64.
    B. Antonsson and R. Leberman, Stabilization of the complex EF-TU. GTP.valyl-tRNA(Val), Biochimie (Paris) 64 : 1035–1040 (1982).CrossRefGoogle Scholar
  65. 65.
    A. Shevack, H.S. Gewitz, B. Hennemann, A. Yonath and H.G. Wittmann, Characterization and crystallization of ribosomal particles from Halobaeterium marismortui, FEBS Lett. 184 : 68–71 (1985).CrossRefGoogle Scholar
  66. 66.
    A Yonath, J. Müssig and H.G. Wittmann, Parameters for crystal growth of ribosomal subunits, J. Cell. Biochem. 19 : 145–155 (1982).PubMedCrossRefGoogle Scholar
  67. 67.
    T. Alber, F.C. Hartman, R.W. Johnson, G. A. Petsko and D. Tsernoglou, Crystallization of yeast phosphate isomerase from polyethylene glycol. Protein crystal formation following phase separation, J. Biol. Chem. 256 : 1356–1361 (1981).PubMedGoogle Scholar
  68. 68.
    H.K. Henoch, Crystal growth in gels, The Pensylvania University (1968).Google Scholar
  69. 69.
    M.C. Robert, F. Lefaucheux and A. Authier, Growth and characterization of brushite and lead monetite. Simulation and results, Proc.5th Europ. Sympos. Material Sci. under Microgravity, (ESA SP-22) 193–199 (1984).Google Scholar
  70. 70.
    F.Hofmeister, Zur Lehre von der Wirkung der Salze, Arch. Exp. Path. Pharm. 24 : 247–260 (1888).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Richard Giegé
    • 1
  1. 1.Institut de Biologie MoléculaireCellulaire du CNRSStrasbourg CedexFrance

Personalised recommendations