Advertisement

The Water Structure in 2Zn Insulin Crystals

  • Ted Baker
  • Eleanor Dodson
  • Guy Dodson
  • Dorothy Hodgkin
  • Rod Hubbard
Part of the NATO ASI Series book series (NSSA, volume 126)

Abstract

Proteins have evolved in an aqueous medium and they have exploited with advantage the bonding and steric properties of the water molecule in achieving their 3 dimensional folding, stability, control of substrate bonding and catalytic reactions. The study of water protein interactions has relied on spectroscopic and calorific methods which generally confirm the essential role water plays in protein structure and folding. The detailed description of the water-protein contacts and the dynamical behaviour of the protein surface atoms and the surrounding water molecules however is a much more challenging undertaking. It must be emphasized that the water molecules on protein surfaces are extremely mobile. They exchange sites very rapidly, even when well ordered by contacts to the protein, and move extensively along the connected networks across the protein. Where there are few specific sites with suitable H bond and other contacts the water molecules exist in a practically continuous population of networks (J Finney, et al., 1982).

Keywords

Water Molecule Water Structure Fold Axis Protein Atom Bonding Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, R. C., 1978, Acta Cryst., A34:791.Google Scholar
  2. Artymiuk, P. J. and Blake, C. C. F., 1981, J. Mol. Biol., 152:737.PubMedCrossRefGoogle Scholar
  3. Baker, E. N., 1980, J. Mol. Biol., 141:441.PubMedCrossRefGoogle Scholar
  4. Baker, E. N. and Hubbard, R. E., 1984, Prog. Biophys. molec. Biol., 44:97.CrossRefGoogle Scholar
  5. Blake, C. C. F., Pulford, W. C. A. and Artymiuk, P. J., 1983, J. Mol. Biol. 167:693.PubMedCrossRefGoogle Scholar
  6. Dodson, E. J., Dodson, G. G., Hodgkin, D. C. and Reynolds, C. D., 1979, Can. J. Biochem., 57:469.PubMedCrossRefGoogle Scholar
  7. Dodson, G. G., 1981, p95, in “Refinement and Protein Structures” P. Machin, J. W. Campbell, and M. Elder, eds., SERC, Daresbury Laboratory Workshop.Google Scholar
  8. Finney, J. L., Goodfellow, J. M. and Poole, P. L., 1982, p387, in “Structural Molecular Biology : Methods and Applications” D. B. Davies, W. Saenger and S. S. Danylak, eds., Plenum Press, New York.Google Scholar
  9. Hendrikson, W. A. and Konnert, J. H., 1980, 13.01 - 13.23, in “Computing in Crystallography” R. Diamond, S. Ramasechan and K. Venketasan, eds., Indian Institute of Science, Bangalore.Google Scholar
  10. James, M. N. G. and Sielecki, A. R., 1983, J. Mol. Biol., 163:299.PubMedCrossRefGoogle Scholar
  11. Machin, P. A., Campbell, J. W. and Elder, M., 1981, “Refinement of Protein structures”11, SERC, Daresbury Laboratory.Google Scholar
  12. Teeter, M., 1984. PNAS(USA), 81:6014CrossRefGoogle Scholar
  13. Watenpaugh, K. D., Marglus, T. N., Sieker, L. C. and Jensen, L. H., 1978. J. Mol. Biol., 122:175.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Ted Baker
    • 1
    • 2
  • Eleanor Dodson
    • 1
  • Guy Dodson
    • 1
  • Dorothy Hodgkin
    • 1
  • Rod Hubbard
    • 1
  1. 1.Dept. of ChemistryUniversity of YorkYorkEngland
  2. 2.Dept.of Biochemistry and ChemistryMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations