Multifunctional Repair Enzymes Excise Thymine and Adenine Residues Damaged by Ionizing Radiation from DNA

  • L. H. Breimer
Part of the NATO ASI Series book series (NSSA, volume 124)


Aerobic metabolism is associated with the chance occurrence of reactive forms of oxygen, which may damage DNA (1–3). Analogous lesions are formed by ionizing radiation (4–6). It has been suggested that many dietary mutagens and carcinogens act through the production of oxygen radicals (7), and the deleterious free radical reactions involving oxygen have also been implicated in the genesis of spontaneous cancer in man (8) as well as in the aging process (9). It has been reported recently (10) that rats, which have a higher basal metabolic rate and shorter life span than humans, excrete in their urine 15 times more thymine glycol (an oxidation product of thymine) per unit body mass compared to humans, though what proportion of this that is derived from tRNA is not clear. Radiation-induced base damage in DNA is known to make an important contribution to the lethal and mutagenic effects observed in vivo (11, 12). Consequently, repair enzymes which act on DNA damaged by ionizing radiation and oxidizing agents are important in the preservation of the genome and prevention of mutagenesis and carcinogenesis.


Potassium Permanganate Ataxia Telangiectasia Crude Cell Extract Adenine Residue Basal Cell Nevus Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. O. Fenn, R. Gerschman, D. L. Gilbert, and F. V. Tothran, Proc. Natl. Acad. Soi. (USA) 43:1027–1032 (1957).CrossRefGoogle Scholar
  2. 2.
    W. J. Bruynickx, H. S. Mason, and S, A. Morse, Nature 274:606–607 (1978).CrossRefGoogle Scholar
  3. 3.
    I. Fridovich, Science 201:875–880 (1978).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Scholes, in: “Photochemistry and Photobiology of Nucleic Acids, Vol. I,” S. Y. Wang, ed., Academic Press, New York (1976), pp. 521–577.Google Scholar
  5. 5.
    R. Teoule and J. Cadet, in: “Effect of Ionizing Radiation on DNA, Chapter 2,” A. J. Bertinchamps, J. Hutterman, W. Kohnlein, and R. Teoule, eds., Springer Verlag, Berlin (1978), pp. 171–203.CrossRefGoogle Scholar
  6. 6.
    J. E. Repine, O. W. Pfenninger, D. W. Talmage, E. M. Berger, and D. E. Pettijohn, Proc. Natl. Acad. Sci. (USA) 78:1001–1003 (1981).CrossRefGoogle Scholar
  7. 7.
    B. N. Arnes, Science 221:1256–1264 (1983).CrossRefGoogle Scholar
  8. 8.
    J. R. Totter, Proc. Natl. Acad. Sci. (USA) 77:1763–1767 (1980).CrossRefGoogle Scholar
  9. 9.
    D. Harman, Proc. Natl. Acad. Sci. (USA) 78:7124–7128 (1981).CrossRefGoogle Scholar
  10. 10.
    R. Cathcart, E. Schwiers, R. L. Saul, and B. N. Arnes, Proc. Natl. Acad. Sci. (USA) 81:5633–5637 (1984).CrossRefGoogle Scholar
  11. 11.
    P. A. Cerutti, in: “Photochemistry and Photobiology of Nucleic Acids, Vol, II,” S. Y. Wang, ed., Academic Press, New York (1976), pp. 375–401.Google Scholar
  12. 12.
    D. E. Levin, M. Hollstein, M. F. Christman, E. A. Schwiers, and B. N. Ames, Proc. Natl. Acad. Sci. (USA) 79:7445–7449 (1982).CrossRefGoogle Scholar
  13. 13.
    L. H. Breimer and T. Lindahl, Nucleic Acids Res. 8:6199–6211 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    G. K. Darby, A. S. Jones, J. R. Tittensor, and R. T. Walker, Nature 216:793–794 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Iida and H. Hayatsu, Biochim. Biophys. Acta 240:370–375 (1971).CrossRefGoogle Scholar
  16. 16.
    M. H. Benn, B. Chatamra, and A. S. Jones, J. Chem. Soc. 1014-1020 (1960).Google Scholar
  17. 17.
    A. S. Jones, G. W. Ross, S. Takemura, T. W. Thompson, and R. T. Walker, J. Chem. Soc. 373-378 (1964).Google Scholar
  18. 18.
    S. Iida and H. Hayatsu, Biochim. Biophys. Acta 213:1–13 (1970).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Iida and H. Hayatsu, Biochim. Biophys. Acta 228:1–8 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    B. Doumas and H. G. Biggs, J. Biol. Chem. 237:2306–2310 (1962).PubMedGoogle Scholar
  21. 21.
    K. Burton and W. T. Riley, Biochem. J. 98:70–77 (1966).PubMedGoogle Scholar
  22. 22.
    M. Beer, S. Stern, D. Carmalt, and R. H. Mohleurich, Biochemistry 5:2283–2288 (1966).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Lindahl, Ann. Rev. Biochem. 51:61–87 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    L. H. Breimer and T. Lindahl, J.Biol. Chem. 259:5543–5548 (1984).PubMedGoogle Scholar
  25. 25.
    M. Radman, J. Biol. Chem. 251:1438–1445 (1976).PubMedGoogle Scholar
  26. 26.
    F. T. Gates, III and S. Linn, J. Biol. Chem. 252:2802–2807 (1977).PubMedGoogle Scholar
  27. 27.
    H. R. Warner, B. F. Demple, W. A. Duetsch, C. M. Kane, and S. Linn, Proc. Natl. Acad. Sci. (USA) 77:4602–4606 (1980).CrossRefGoogle Scholar
  28. 28.
    B. F. Demple and S. Linn, Nature 287:203–208 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    H. L. Katcher and S. S. Wallace, Biochemistry 22:4071–4082 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    L. H. Breimer, Biochemistry 22:4192–4197 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    M. C. Hollstein, P. Brooks, S. Linn, and B. N. Ames, Proc. Natl. Acad. Sci. (USA) 81:4003–4007 (1984).CrossRefGoogle Scholar
  32. 32.
    J. J. van Hemmen and J. F. Bleichrodt, Radiat. Res. 46:444–456 (1971).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Bonicel, N. Mariaggi, E. Hughes, and R. Teoule, Radiat. Res. 83:19–26 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    J. A. Haines, C. B. Reese, and Lord Todd, J. Chem. Soc. 5281-5288 (1962).Google Scholar
  35. 35.
    C. J. Chetsanga and T. Lindahl, Nucleic Acids Res. 6:3673–3684 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    G. P. Margison and A. E. Pegg, Proc. Natl. Acad. Sci. (USA) 78:861–865 (1981).CrossRefGoogle Scholar
  37. 37.
    S. Boiteux and J. Laval, Biochem. Biophys. Res. Commun. 110:552–558 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    L. H. Breimer, Nucleic Acids Res. 12:6359–6367 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • L. H. Breimer
    • 1
  1. 1.Imperial Cancer Research FundMill Hill LaboratoriesLondonEngland

Personalised recommendations