Human Cancer-Prone Disorders, Abnormal Carcinogen Response, and Defective DNA Metabolism

  • M. C. Paterson
  • M. V. Middlestadt
  • M. Weinfeld
  • R. Mirzayans
  • N. E. Gentner
Part of the NATO ASI Series book series (NSSA, volume 124)


Insight into cancer, one of the principal scourges of modern man, has increased slowly but steadily over the years. Epidemiologists concur that most human malignancies are caused, at least in part, by environmental determinants over which an individual can exercise some control; in principle then, the disease is preventable to some extent (10). In practice, however, the goal of cancer prevention by large-scale efforts to minimize exposure to the causal agents would seem to be unattainable, as judged by societal experience with two major ‘life-style‚ factors, habitual tobacco usage and sunbathing. Although an ultimate aim is to develop other more socially acceptable prevention strategies, there exists in the interim a requirement for improved diagnostic techniques and more rational treatment protocols. Each of these approaches to cancer control will almost certainly necessitate clearer understanding of the fundamental mechanisms underlying the etiology and pathogenesis of the disease.


Acquire Immune Deficiency Syndrome Polycythemia Vera Ataxia Telangiectasia Xeroderma Pigmentosum Ataxia Telangiectasia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. T. Bech-Hansen, W. A. Blattner, B. M. Sell, E. A. McKeen, B. C. Lampkin, J. F. Fraumeni, Jr., and M. C. Paterson, Transmission of in-vitro radioresistance in a cancer-prone family, Lancet 1:1335 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    N. T. Bech-Hansen, B. M. Sell, J. J. Mulvihill, and M. C. Paterson, Association of in vitro radiosensitivity and cancer in a family with acute myelogenous leukemia, Cancer Res. 41:2046 (1981).PubMedGoogle Scholar
  3. 3.
    W. A. Blattner, D. B. McGuire, J. J. Mulvihill, B. C. Lampkin, J. Hananian, and J. F. Fraumeni, Jr., Genealogy of cancer in a family, JAMA 241:259 (1979).PubMedCrossRefGoogle Scholar
  4. 4.
    Center for Disease Control, Opportunistic infections and Kaposi’ s sarcoma among Haitians in the United States, Morbid. Mortal. Weekly Rep. 31:353 (1982).Google Scholar
  5. 5.
    J. E. Cleaver, Defective repair replication of DNA in xeroderma pigmentosum, Nature 218:652 (1968).PubMedCrossRefGoogle Scholar
  6. 6.
    J. E. Cleaver, DNA damage, repair systems and human hypersensitive diseases, J. Environ. Pathol. Toxicol. 3:53 (1980).PubMedGoogle Scholar
  7. 7.
    A. R. S. Collins and R. T. Johnson, Use of metabolic inhibitors in repair studies, in: “DNA Repair: A Laboratory Manual of Research Procedures, Vol. 1, Part B,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, Inc., New York (1981), pg. 341.Google Scholar
  8. 8.
    R. Cox, A celluar description of the repair defect in ataxiatelangiectasia, in: “Ataxia-Telangiectasia — A Cellular and Molecular Link between Cancer, Neuropathology, and Immune Deficiency”, B.A. Bridges and D.G. Harnden, eds., John Wiley & Sons, Chichester (1982), pg. 141.Google Scholar
  9. 9.
    R. S. Day, III, C. H. J. Ziolkowski, D. A. Scudiero, S. A. Meyer, A. S. Lubiniecki, A. J. Girardi, S. M. Galloway, and G. D. Bynum. Defective repair of alkylated DNA by human tumor and SV40-transformed human cell strains, Nature 288:724 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    R. Doll and R. Peto, The causes of cancer, J. Natl. Cancer Inst. 66:1191 (1981).PubMedGoogle Scholar
  11. 11.
    E. Farber, Cellular biochemistry of the stepwise development of cancer with chemicals: G. H. A. Clowes Memorial Lecture, Cancer Res. 44:5463 (1984).PubMedGoogle Scholar
  12. 12.
    J. F. Fraumeni, Jr., C. L. Vogel, and J. M. Easton, Sarcomas and multiple polyposis in a kindred: A genetic variety of hereditary polyposis?, Arch. Intern. Med. 121:57 (1968).PubMedCrossRefGoogle Scholar
  13. 13.
    E. C. Friedberg, T. Bonura, J. D. Love, S. McMillan, E. H. Radany, and R. A. Schultz, The repair of DNA damage: Recent developments and new insights, J. Supramolec. Struct. Cell. Biochem. 16:91 (1981).CrossRefGoogle Scholar
  14. 14.
    E. C. Friedberg, U. K. Ehmann, and J. I. Williams, Human diseases associated with defective DNA repair, Adv. Radiat. Biol. 8:85 (1979).Google Scholar
  15. 15.
    Y. Fujiwara, Defective repair of mitomycin C crosslinks in Fanconi’s anemia and loss in confluent normal human and xeroderma pigmentosum cells, Biochim. Biophys. Acta 699:217 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    N. E. Gentner, B. Rözga, B. P. Smith, M. C. Paterson, and J. Cadet, Proc. 9th Annual Meeting Am. Soc. Photobiol., (1981), pg. 164 (abstr.).Google Scholar
  17. 17.
    N. E. Gentner, M. Weinfeld, L. D. Johnson, and M. C. Paterson, Incision of the phosphodiester bond internal to the pyrimidine dimer-forming bases may occur during excision repair of UV-induced damage in human fibroblasts, Env. Mutag. 6:429 (1984) (abstr.).Google Scholar
  18. 18.
    M. H. Greene, J. J. Goedert, N. T. Bech-Hansen, D. McGuire, M. C. Paterson, and J. F. Frauraeni, Jr., Radiogenic male breast cancer with in vitro sensitivity to ionizing radiation and bleomycin, Cancer Invest. 1:379 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Harm, Repair of UV-irradiated biological systems: Photoreactivation, in: “Photochemistry ad Photobiology of Nucleic Acids, Vol. 2,” S. Y. Wang, ed., Academic Press, New York (1976), pg. 219.Google Scholar
  20. 20.
    W. A. Haseltine, Ultraviolet light repair and mutagenesis revisited, Cell 33:13 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    J. Higginson and C. S. Muir, Environmental carcinogenesis: Misconceptions and limitations to cancer control, J. Natl. Cancer Inst. 61:1291(1979).Google Scholar
  22. 22.
    J. Houldsworth and M. F. Lavin, Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells, Nucleic Acids Res. 8:3709 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    M. Ikenaga, M. Tada, and Y. Kawazoe, Measurement of base damage caused by 4-nitroquinoline 1-oxide, in: “DNA Repair: A Laboratory Manual of Research Procedures, Vol. 1, Part A,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, Inc., New York (1981), pg. 187.Google Scholar
  24. 24.
    N. G. J. Jaspers and D. Bootsma, Abnormal levels of UV-induced unscheduled DNA synthesis in ataxia telangiectasia cells after exposure to ionizing radiation, Mutat. Res. 92:439 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    N. G. J. Jaspers, R. B. Painter, M.C. Paterson, C. Kidson, and T. Inoue, Complementation analysis of ataxia-telangiectasia, in: “Ataxia-Telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood,” R. A. Gatti and M. Swift, eds., Alan R. Liss, Inc., New York (1985), pg. 147.Google Scholar
  26. 26.
    K. H. Kraemer, Heritable diseases with increased sensitivity to cellular injury, in: “Update: Dermatology in General Medicine,” T. B. Fitzpatrick, A. Z. Eisen, K. Wolff, I. M. Freedberg, and K. F. Austen, eds., McGraw-Hill Book Co., New York (1983), pg. 113.Google Scholar
  27. 27.
    M. LaBelle and S. Linn, in vivo excision of pyrimidine dimers is mediated by a DNA N-glycosylase in Micrococcus luteus but not in human fibroblasts, Photochem. Photobiol. 36:319(1982).CrossRefGoogle Scholar
  28. 28.
    A. R. Lehmann, M. R. James, and S. Stevens, Miscellaneous observations on DNA repair in ataxia-telangiectasia, in: “Ataxia-telangiectasia—A Cellular and Molecular Link between Cancer, Neuropatholgy and Immune Deficiency,” B. A. Bridges and D. G. Harnden, eds., John Wiley & Sons, Chichester (1982), pg. 347.Google Scholar
  29. 29.
    F. P. Li and J. F. Fraumeni, Jr., Soft-tissue sarcomas, breast cancer, and other neoplasms: A familial syndrome?, Ann. Intern. Med. 71:747(1969).PubMedGoogle Scholar
  30. 30.
    T. Lindahl, DNA repair enzymes, Ann. Rev. Biochem. 51:61 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    G. P. Margison and P. J. O’Connor, Nucleic acid modification by N-nitroso compounds, in: “Chemical Carcinogens and DNA, Vol. 1,” P. L. Glover, ed., CRC Press, Florida (1979), pg. 111.Google Scholar
  32. 32.
    J. J. McCormick, K. C. Silinskas, S. A. Kateley, J. E. Tower, and V. M. Maher. The induction of anchorage independent growth and tumor formation of diploid human fibroblasts by carcinogens, Proc. Am. Assoc. Cancer Res. 22:122 (1981) (abstr.).Google Scholar
  33. 33.
    V. A. McKusick, “Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive, and X-linked Phenotypes (Fifth Ed.),” The Johns Hopkins University Press, Baltimore (1978).Google Scholar
  34. 34.
    M. V. Middlestadt, G. Norton, and M. C. Paterson, Absence of O6methylguanine-DNA methyltransferase activity in a nontransformed human fetal fibroblast line, Env. Mutag. 6:430 (1984) (abstr.).Google Scholar
  35. 35.
    R. W. Miller, Clinical clues to interactions in carcinogenesis, in: “Genetic and Environmental Factors in Experimental and Human Cancer,” H. V. Gelboin et al., eds., Japanese Scientific Societies Press, Tokyo (1980), pg. 351.Google Scholar
  36. 36.
    R. Mirzayans and R. Waters, DNA damage and its repair in human normal or xeroderma pigmentosum fibroblasts treated with 4-nitroquinoline 1-oxide or its 3-methyl derivative, Carcinogenesis 2:1359 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    J. J. Mulvihill, Clinical observations of ecogenetics in human cancer, Ann. Intern. Med. 92:809 (1980).PubMedGoogle Scholar
  38. 38.
    NIGMS Human Genetic Mutant Cell Repository (Eleventh Ed.), U.S. Department of Health and Human Services, Bethesda (1984).Google Scholar
  39. 39.
    M. Olsson and T. Lindahl, Repair of alkylated DNA in Escherichia coli: Methyl group transfer from O6-methylguanine to a protein cysteine residue, J. Biol. Chem. 255:10569 (1980).PubMedGoogle Scholar
  40. 40.
    M. C. Paterson, Accumulation of non-photoreactivable sites in DNA during incubation of UV-damaged xeroderma pigmentosum group A and group D cells, Prog. Mutat. Res. 4:183 (1982).Google Scholar
  41. 41.
    M. C. Paterson, N. T. Bech-Hansen, W. A. Blattner, and J. F. Fraumeni, Jr., Survey of human hereditary and familial disorders for γ ray response in vitro: Occurrence of both cellular radiosensitivity and radioresistance in cancer-prone families, in: “Radioprotectors and Anticarcinogens,” O. F. Nygaard and M. G. Simic, eds., Academic Press, New York (1983), pg. 615.Google Scholar
  42. 42.
    M. C. Paterson, N. T. Bech-Hansen, P. J. Smith, and J. J. Mulvihill, Radiogenic neoplasia, cellular radiosensitivity and faulty DNA repair, in: “Radiation Carcinogenesis: Epidemiology and Biological Significance,” J. D. Boice, Jr. and J. F. Fraumeni, Jr., eds., Raven Press, New York (1984), pg. 319.Google Scholar
  43. 43.
    M. C. Paterson and N. E. Gentner, Introduction: Environmentally induced DNA lesions and their biological consequences, in: “Repairable Lesions in Microorganisms,” A. Hurst and A. Nasim, eds., Academic Press, New York (1984), pg. 1.Google Scholar
  44. 44.
    M. C. Paterson, N. E. Gentner, M. V. Middlestadt, and M. Weinfeld, Cancer predisposition, carcinogen hypersensitivity and aberrant DNA metabolism, J. Cell. Physiol. Suppl. 3:45 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    M. C. Paterson, S. J. MacFarlane, N. E. Gentner, and B. P. Smith, Cellular hypersensitivity to chronic γ-radiation in cultured fibroblasts from ataxia-telangiectasia heterozygotes, in: “Ataxia-Telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood,” R. A. Gatti and M. Swift, eds., Alan R. Liss, Inc., New York (1985), pg. 73.Google Scholar
  46. 46.
    M. C. Paterson, B. M. Sell, B. P. Smith, and N. T. Bech-Hansen, Impaired colony-forming ability following γ irradiation of skin fibroblasts from tuberous sclerosis patients, Radiat. Res. 90:260 (1982).PubMedCrossRefGoogle Scholar
  47. 47.
    M. C. Paterson, B. P. Smith, A. J. Krush, and E. A. McKeen, In vitro hypersensitivity to N-methyl-N’-nitro-N-nitrosoguanidine in a Gardner syndrome family, Radiat. Res. 87:483 (1981) (abstract)Google Scholar
  48. 48.
    M. C. Paterson, B. P. Smith, and P. J. Smith, Measurement of enzymesensitive sites in UV-or γ-irradiated human cells using Micrococcus luteus extracts, in: “DNA Repair: A Laboratory Manual of Research Procedures, Vol. 1, Part A,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, Inc., New York (1981), pg. 99.Google Scholar
  49. 49.
    A. E. Pegg, M. Roberfroid, C. von Bahr, R. S. Foote, S. Mitra, H. Bresil, A. Likhachev, and R. Montesano, Removal of O6 “-methylguanine from DNA by human liver fractions, Proc. Natl. Acad. Sci. USA 79:5162 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    J. H. Robbins, Hypersensitivity to DNA-damaging agents in primary degenerations of excitable tissue, in: “Cellular Responses to DNA Damage,” E. C. Friedberg and B. A. Bridges, eds., Alan R. Liss, Inc., New York (1983), pg. 673.Google Scholar
  51. 51.
    A. Sancar and W. D. Rupp, A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region, Cell 33:249 (1983).PubMedCrossRefGoogle Scholar
  52. 52.
    D. A. Scudiero, Decreased DNA repair synthesis and defective colony-forming ability of ataxia telangiectasia fibroblast cell strains treated with N-methyl-N’-nitro-N-nitrosoguanidine, Cancer Res. 40:984 (1980).PubMedGoogle Scholar
  53. 53.
    D. A. Scudiero, S. A. Meyer, B. E. Clatterbuck, M. R. Mattern, C. H. J. Ziolkowski, and R. S. Day, III, Relationship of DNA repair phenotypes of human fibroblast and tumor strains to killing by N-methyl-N’-nitro-N-nitrosoguanidine, Cancer Res. 44:961 (1984).PubMedGoogle Scholar
  54. 54.
    Y. Shiloh, E. Taber and Y. Becker, The response of ataxiatelangiectasia homozygous and heterozygous skin fibroblasts to neocarzinostatin, Carcinogenesis 3:815 (1982).PubMedCrossRefGoogle Scholar
  55. 55.
    B. Singer, N-nitrosoalkylating agents: Formation and persistence of alkyl derivatives in mammalian nucleic acid as contributing factors in carcinogenesis, J. Natl. Cancer Inst. 62:1329 (1979).PubMedGoogle Scholar
  56. 56.
    R. Sklar and B. Strauss, Removal of O6-methylguanine from DNA of normal and xeroderma pigmentosum-derived lymphoblastoid lines, Nature 289:417 (1981).PubMedCrossRefGoogle Scholar
  57. 57.
    P. J. Smith, M. H. Greene, D. Adams, and M. C. Paterson, Abnormal responses to the carcinogen 4-nitroquinoline 1-oxide of cultured fibroblasts from patients with dysplastic nevus syndrome and hereditary cutaneous malignant melanoma, Carcinogenesis 4:911 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    P. J. Smith, M. H. Greene, D. A. Devlin, E. A. McKeen, and M. C. Paterson, Abnormal sensitivity to UV-radiation in cultured skin fibroblasts from patients with hereditary cutaneous malignant melanoma and dysplastic nevus syndrome, Int. J. Cancer 30:39 (1982).PubMedCrossRefGoogle Scholar
  59. 59.
    P. J. Smith and M. C. Paterson, Defective DNA repair and increased lethality in ataxia telangiectasia cells exposed to 4-nitroquinoline 1-oxide, Nature 287:747 (1980).PubMedCrossRefGoogle Scholar
  60. 60.
    P. J. Smith and M. C. Paterson, Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients, Mutat. Res. 94:213 (1982).PubMedCrossRefGoogle Scholar
  61. 61.
    M. Swift and C. Chase, Cancer and cardiac deaths in obligatory ataxia-telangiectasia heterozygotes, Lancet 1:1049 (1983).PubMedCrossRefGoogle Scholar
  62. 62.
    M. Swift, L. Sholman, M. Perry and C. Chase, Malignant neoplasms in the families of patients with ataxia-telangiectasia, Cancer Res., 36:209 (1976).PubMedGoogle Scholar
  63. 63.
    M. Tada and M. Tada, Seryl-tRNA synthetase and activation of the carcinogen 4-nitroquinoline 1-oxide, Nature 255:510 (1975).PubMedCrossRefGoogle Scholar
  64. 64.
    R. E. Tarone, D. A. Scudiero, and J. H. Robbins, Statistical methods for in vitro cell survival assays, Mutat. Res. 111:79 (1983).PubMedCrossRefGoogle Scholar
  65. 65.
    M. Tomasz and R. Lipman, Reductive metabolism and alkylating activity of mitomycin C induced by rat liver microsomes, Biochemistry 20:5056(1981).PubMedCrossRefGoogle Scholar
  66. 66.
    G. P. van der Schans, M. C. Paterson, and W. G. Cross, DNA strand break and rejoining in cultured human fibroblasts exposed to fast neutrons or gamma rays, Int. J. Radiat. Biol. 44:75 (1983).CrossRefGoogle Scholar
  67. 67.
    K. Welshimer and M. Swift, Congenital malformations and developmental disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma pigmentosum families, Am. J. Hum. Genet. 34:781 (1982).PubMedGoogle Scholar
  68. 68.
    A. S. Wright, The role of metabolism in chemical mutagenesis and chemical carcinogenesis, Mutat. Res. 75:215 (1980).PubMedCrossRefGoogle Scholar
  69. 69.
    D. B. Yarosh, R. S. Foote, S. Mitra, and R. S. Day, III, Repair of O6-methylguanine in DNA by demethylation is lacking in Mer-human tumor cell strains, Carcinogenesis 4:199 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. C. Paterson
    • 1
  • M. V. Middlestadt
    • 1
  • M. Weinfeld
    • 1
  • R. Mirzayans
    • 1
  • N. E. Gentner
    • 2
  1. 1.Molecular Genetics and Carcinogenesis Laboratory, Department of MedicineCross Cancer InstituteEdmontonCanada
  2. 2.Health Sciences Division Chalk River Nuclear LaboratoriesAtomic Energy of Canada LimitedChalk RiverCanada

Personalised recommendations