Investigation of the Sensitivity of Oriented (φX-174 DNA to Ionizing Radiation

  • P. D. McCormack
  • C. Swenberg
Part of the NATO ASI Series book series (NSSA, volume 124)


Application of an external electric field to an aqueous solution of φX-174 DNA is shown to result
  1. a.

    in specific reduced dichroism changes which saturate at a field strength of 15,000 V/cm.

  2. b.

    in increased sensitivity to damage by gamma-radiation estimated by agarose gel electrophoresis as single strand breaks.


Due to the mobility of the DNA, the maximum voltage used was 400 (2400 V/cm) and the percentage increase in yield (of SSBs per molecule) was 38%. At this field strength, theory predicts that only about 10% of the molecules are oriented by the field. The increase in damage must therefore be largely attributed to the conformational changes (unfolding) in the molecules induced by the applied electric field.


Field Strength External Electric Field Single Strand Break Radiation Experiment Electric Field Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. W. Brady, T. L. Phillips, and T. H. Wasserman, in: “Progress in Radio-Oncology, II,” K. H. Karcher, ed., Raven Press, New York, (1982), pp. 834–842.Google Scholar
  2. 2.
    E. Charney and K. Yamaoka, Biochemistry 21:834–842 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    H. H. Chen, E. Charney, and D. Rau, Nucleic Acids Research 10:3561–357(1982).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Jernigan and S. Miyazawa, in: “Molecular Electro-Optics,” S. Krause, ed., Plenum Press (1981), pp. 163-179.Google Scholar
  5. 5.
    W. Gunther and H. Jung, Z. Naturforsch 22b:313 (1967).Google Scholar
  6. 6.
    J. Blok and H. Loman, Current Topics in Rad. Res. Quart. 9:165 (1973).Google Scholar
  7. 7.
    G. Scholes, Prog. Biophys. Mol. Biol. 13:597 (1963).CrossRefGoogle Scholar
  8. 8.
    J. Ward, Int. J. Rad. Phys. Chem. 3:239 (1971).CrossRefGoogle Scholar
  9. 9.
    R. Braams and M. Ebert, Adv. Chem. Ser. 81:464–471 (1968).CrossRefGoogle Scholar
  10. 10.
    R. Braams and M. Ebert, Int. J. Rad. Biol. 13:195 (1967).CrossRefGoogle Scholar
  11. 11.
    U. Hagen, Biochim. Phys. Acta 134:45 (1967).CrossRefGoogle Scholar
  12. 12.
    P. H. Johnson and L. J. Grossman, Biochemistry 16:4217 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    J. McGhee, D. Rau, E. Charney, and G. Felsenfeld, Cell 22(Pt. 1):87 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Wu, N. Dattagupta, M. Hogan, and D. Crothers, Biochemistry 18:3960 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • P. D. McCormack
    • 1
  • C. Swenberg
    • 2
  1. 1.Division of Cancer Diagnosis and Biology, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Division of Physical RadiobiologyArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations