Gene Amplification in Mammalian Cells after Exposure to Ionizing Radiation and UV

  • Christine Lucke-Huhle
  • Peter Herrlich
Part of the NATO ASI Series book series (NSSA, volume 124)


Since the initial observations (1, 2), gene amplifications have been detected in several organisms and cell cultures (review: 3). One system has been studied extensively: The development of resistance to methotrexate (MTX). This resistance is associated with the amplification of the gene for the methotrexate target enzyme, dihydrofolate reductase (4). In this system, the spontaneous rate of gene amplification has been determined to 10−3 events per cell division (5). Amplification is enhanced not only by MTX treatment but also by other agents which affect nucleotide metabolism (3), or by treatment of cells with tumor promoters or mutagens (6, 7). The amplification goes along with the appearance of unstable chromosomal structures called double minute chromosomes (8), or of stably integrated homogeneously staining regions (9).


Gene Amplification Alpha Particle Dihydrofolate Reductase Human Skin Fibroblast Ataxia Telangiectasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Ritossa, Natl. Acad. Sci. (USA) 60:509–516 (1968).CrossRefGoogle Scholar
  2. 2.
    D. D. Brown and I. B. Dawid, Science 160:272–280 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    R. T. Schirake, Cell 37:705–713 (1984).CrossRefGoogle Scholar
  4. 4.
    R. T. Schimke, F. W. Alt, R. E. Kellems, R. Kaufman, and J. R. Bertino, Cold Spring Harbor Symp. Quant. Biol. 62:649–657 (1978).CrossRefGoogle Scholar
  5. 5.
    R. N. Johnston, S. M. Beverley, and R. T. Schmike, Proc. Natl. Acad. Sci. (USA) 80:3711–3715 (1983).CrossRefGoogle Scholar
  6. 6.
    A. Varshavsky, Cell 25:561–572 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Lavi, Proc. Natl. Acad. Sci. (USA) 78:5148–6144 (1981).CrossRefGoogle Scholar
  8. 8.
    J. L. Biedler and B. A. Spengler, Science 191:185–187 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Balaban-Malenbaum and F. Gilbert, Science 198:739–742 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    P. Herrlich, P. Angel, C. Lucke-Huhle, N. Harth, A. Eades, and H. J. Rahmsdorf, Adv. in Enzyme Regulation 25: (1986) in press.Google Scholar
  11. 11.
    J. Whang-Peng, C. S. Kao-Shan, E. C. Lee, P. A. Bunn, D. N. Carney, A. F. Gazdar, C. Portlock, and J. D. Minna, in: “Gene Amplification,” Cold Spring Harbor Laboratory (1982), pp. 107-113.Google Scholar
  12. 12.
    S. Lavi and S. Etkin, Carcinogenesis 2:417–423 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    C. Lucke-Huhle, W. Comper, L. Hieber, and M. Pech, Radiat. Environm. Biophys. 20:171–185 (1982).CrossRefGoogle Scholar
  14. 14.
    J. Cairns, “UCLA Symposium on Molecular and Cellular Biology New Series, Vol. 2,” Alan R. Liss, Inc., New York (1982), pp. 559–562.Google Scholar
  15. 15.
    C. J. Bostock and C. Tyler-Smith, in: “Gene Amplification,” Cold Spring Harbor Laboratory (1982), pp. 15-21.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Christine Lucke-Huhle
    • 1
  • Peter Herrlich
    • 1
  1. 1.Kernforschungszentrum KarlsruheInstitut fur Genetik und ToxikologieKarlsruhe 1Federal Republic of Germany

Personalised recommendations